SIS

N

1

Business Analysis

- Exactly how they do it on the job.

A Step by Step Guide
For Beginners

Includes Business Analysis Techniques,
Process Modeling with UML Diagrams,
Software Testing and Project Templates

Author:

Arvind Mehta

Business Analysis- Exactly how they do it on the [p
First Edition

Copyright © 2013

ISBN-10: 0-615-80726-7

ISBN-13: 978-0-615-80726-3

The right of Arvind Mehta to be identified as autlod this work has been asserted by him in
accordance with the U.S. Copyright Act of 1976.

All rights reserved. No part of this publication yniae reproduced, stored in retrieval system, or
transmitted in any form or by any means, electromi@chanical, photocopying, recording
including but not limited to, in any network or ethelectronic storage or transmission, or
broadcast for distance learning or otherwise, withtbe prior written permission of the author.
You may use the work for your own noncommercial patsonal use; any other use of the work
is strictly prohibited. Your right to use the wonkay be terminated if you fail to comply with
these terms.

All trademarks used in the book are the propenietheir respective owners. The use of any
trademark in this text does not vest in the autloy trademark ownership rights in such
trademarks, nor does the use of such trademarkyg any affiliation with or endorsement of this
book by such owners.

This book is written solely for informative purpogeuthor of the book is not engaged in
rendering any business services thus is not reggerier any sort of tangible or intangible
damage caused by the information provided in thizkb

Dedicated to my lovely family-

My wife Vandana and my daughters Missy, Molly andigan

About the Author:

A graduate in Business Management from Institut®rmfductivity and Management (IPM),

India, Arvind Mehta has more than twelve years>gegience in business process modeling &
designing process architecture, process re-engnieé&r optimization and aligning strategic IT
initiatives with organizational objectives specifly with supply chain processes in SAP
centric environment. Arvind is also a certifiedsormaster (CSM) and is a participating SAP
Supply Chain Management consultant with avid irgeeire continuous process improvement.

Arvind is also the founder and chair of the boafdssociation of Supply Chain Management
Practitioners (ASCMP), Omaha, Nebraska based arghon engaged in generating and
encouraging a highly creative and analytic thoughtlership, promoting the best practices in
supply chain arena. ASCMP provides a comprehenkn@vledge sharing platform to the

professionals and organizations to collaborate \wndk together for mutual benefits. It also

educates small and mid size companies about sgppin best practices.

Preface:

The prime motive which gave birth to the idea oftiwg this book came from my passion and
interest in continuous process improvement. Whslsting my clients to maximize their return
on investment on their strategic IT initiatives dsed on their business processes optimization
programs, | decided to document my experience wimelily led to authoring this book.

Purpose of the book:

Writing this book is an endeavor to reaching theugrof people who wish to start their career

in IT as a Business Analyst as well as those wieoatready working as business analysts and
intend to have a more clear understanding of basiaealysis.

This book is a compilation of my professional exgece and notes which | gathered during my
work. It aims at providing a step by step practigadlerstanding of what a Business Analyst does
on his job in his day to day routine. The explamaiin this book have been supported with the
help of real project documents and templates arsihbss process examples. | have put in my
best efforts to use an easy going language andl mme best to compress the hundred points in
one page instead of spreading one point in hunolagés.

Scope of the book:

T here are seven chapters in this baBkapter one and twoexplain the basic concept of IT
projects, various key roles involved in a typicedjpct, and pre project activities to be performed
by a business analystChapter three and four focus on the requirement gathering process,
techniques, managing the requirement risks, saig®jmenting the requirements and cover gap
analysis & use casef£hapter five explains the software development life cycle, vasi
software development models and also suggestsrtisegnd cons of each mod€lhapter six
explicates business process modeling through UMgrdims an&€hapter sevencovers manual
software testing, software defect life cycle, f@an, test strategy, test cases and test conditions

| believe this book should serve the purpose thaitpd the seed of the idea of writing this book
and you will find it as one of the most easy goamgl interesting books with the most practical
aspects of business analyst profession.

Acknowledgement:

| extend my heartiest thanks to my friend SN Padhd vwwncouraged me to write this book.

Surya is SAP FICO consultant and has been dedicated to seev8AP community by writing
books and developing free online tutorials and eotst for SAP professionals. Some of the
contents in this book is a result of my researcinternet and has been derived from the various
internet sites and white papers and may or mayexist in the exact same language as | found
their existing lingo to be the best expressionhef toncept and can not be expressed in a better
way than their existing form. | express my heartfgtitude to the authors of those articles and
white papers for authoring the contents as those wetremendous help to me in writing this
book.

| also thank to all others who were involved dilgalr indirectly and extended their support to
writing this book, specially my family- my wife Vdana and my daughters Missy, Molly and
Gunjan. | couldn’'t have been able to dedicate nmyetito writing this book without their
understanding and cooperation.

10

11

Contents at a Glimpse

Page

Chapter 1. Introduction 13
1.1 Introduction: IT Projects- Understanding thg@'r Pictureoooviiiiii s 13
1.2 Key Roles involved .. Y -
1.3 Where a Business Analyst flts in the blggetLpez .. 16
Chapter 2. Pre-project activitieg 19
2.1 Analyzing the ENterpriSec.uiriieie it i e e e et e e e e e ee e 19
2.1.1 Defining BUSINESS ArChItECIUIEoeiei it e e e 19
2.1.2 Conducting Feasibility Studyoooiii i e e e e 22
2.1.2.1 Feasibility AnalysiS TEChNIQUESco i e e 22
2.1.3 Determining ProjeCt SCOPEvvutie e e e e et e et e e e ete e e eae eaeaens 24
2.1.4 Writing BUSINESS CASEeiuiitiitit et et e et e et et e camemees 24
2.1.5 Initial Risk Assessment .. e e e e e 2D
2.1.6 Decision Package: Go/ No Go DeC|S|on .. 26
2.1.7 ProjecCt PriOMtiZatiONnc..ieiie e e e e s e e e e e e e e e o e e 27
2.1.8 Project Value Managementocouiiininiie i e et e e e eeme e 31
Chapter 3: Requirement Gathering 33
3.1 Requirements Definition and TYPESvuiiriii it e e et e e e e 33
3.2 Requirement PIanningcooi oo e e e e e 38
3.2.1 Identification of the key roles involved hetrequirementscocooeee. 38
3.2.2 Requirements Risk Managementccoovvieiieis st esermeee e eaas 39
3.2.3 Requirements Scope Managementccceevviiiieiieeiiieninecinieneenn e 0l
3.2.4 Requirements Change Managementccccovveeiieeeiinienienieeeemeanenanns 54
3.3 Requirement Elicitation and Elicitation TeChumgccccooiiiiiiii i 57
3.4 Requirement Verification and Validationccceii i 60
Chapter 4. Documenting Requiremen 65

4.1 Requirement Analysis and Documentation commmcevierieeineeneen....05
4.2 GAP ANAIYSIS ..o e e e e en e a2 2. 08
G B AV 1] o TS = = T = [)

Chapter 5: Software development Life Cycland methodolog 77
5.1.General MOEL ..o e e e 78
5.2Waterfall MOdel e 79

B B V- MOA B o e e e e 80

5.4 Incremental MOAEl ... 81
5.5 Spiral Model . P 22
5.6 Rapid Appllcatlon Development (RAD) .. 83
5.7 Rational Unified Process (RUP)ooiiii i et et e e e 84
B 8 AGIIE et e 91
ST TR o1 1] o 92
5.10 Extreme Programming (XP)c..oeiie it it e e et e 95
5.11 Dynamic System Development Methodology (DSDM)..........cooviviiiiiiiieiennn. 98
Chapter 6: UML Diagrams For Business Process Maaling: 101
6.1 USE CaASE DIAGIAIM ...uiuittitie it it e e et e e e e e e e e e ae e e e a e e 102
6.2 Class Diagram .. TP 0 -
6.3 Package & Object Dlagram ... 104
6.4 Sequence Diagram .. PPN ¢ L0
6.5 Collaboration Diagram ... 107
6.6 State Chart Diagramccooiiiiiei i i ee e e e e el 08
6.7 ACHVILY DIAgIam ...ttt et e e e et e e e e e e e e 109
6.8 Component & Deployment DIagramc..veiie e i oin e 111
Chapter 7: Software Testing 113
7.1 Software Testing: Definition, and Life CYCle e ..o, 113
7.1.1 Software Defects: Definition and Life CyCl€ ..o vovivviiiiiiiiiiiieiie e e a0 118
T7.1.2 TYPES Of TOSHNG ..ottt e e e e e e e e e e e e e e e e ees 121
7.2 Creating Software Test Plan & Test Strategy......cocveeivviiiiie e e, 124
7.3 Software Test Scenario, Test Cases & Test @ONdi...........ccoviieiiiiiiiiiiiin e, 126
Annexure: Sample Project Documents and Docuents

A.1l Project SCOPE DOCUMENTuti et 133
N (0] =T ox S T g =) 141
A.3 Business Case . P %
A4 BusmessRequwementDocument PP L ¥ 4
AL GaAP ANAIY SIS oottt e 149
A.6 Requirement Change ReqUESt FOIM ..o i e e e s e e 151
A.7 Impact Analysis Checklist for Requirement Ch@®g............cccovviiiiiiiiiii i, 155
A.8 Effort Estimation for Requirement Changescccceiiiiiiiiiiii i e, 157
A.9 Impact ANAlYSIS REPOIT ..o e e e e e e 159

13

CHAPTER 1:

Introduction

1.1 IT Project: Understanding the bigger pictue

To understand what the role and responsibilities bfisiness analyst are and where a business
analyst fits in a project, first we need to lookthe project as a bigger picture and try to
understand:

* What a project is

* Why a project is initiated

* What other key roles a project involves

* How these roles are aligned with each other

Defining Project:

Project management book of knowledge defines a&pras “A temporary endeavor undertaken
to create unique product or service- temporary meéahas an end date and unique means the
result of every project is different than any otpewject or other functions of the organization”

As we progress through the project life cycle, onderstanding of the project, its characteristics
and its result keeps getting elaborated graduBlgjects are different than operations- projects
are temporary in nature and usually involve hetenegus teams where as operations are
ongoing activities and usually involve homogenei@asns.

Why a Project is initiated:

Initiating a project carries a unique problem sodvapproach and is usually aimed at resolving a
business related issues which can be of any tyqgle s

» Developing a software application to automate #Hiessprocess and integrating it with
inventory management application so that righhattime of taking the order from the
customer, sales person would know the exact dadelofery.

* Integrating the functionalities of different depagnts to make a seamless business
process so that management can get the real tpoetisevhich in turn will speed up the
decision making process.

* Recognizing the need of periodic training of empley to increase their efficiency and
productivity.

« Analyzing the current business processes and segquémctivities to find out the scope
of any further improvement/ optimization possibilerder to minimize the total cost of
ownership and maximizing the return on investment.

14

1.2 Key Roles Involved:

Typical key roles may involve but may not be lindit® the described below:
Project Sponsor/Executive Sponsor/Project Champio@wner:

The project sponsor reports to the corporate ekecudr executive committee. Executive
sponsor may or may not be the project sponsor budlly is always a project champion or
owner. On a very large project an executive sponsy delegate the tactical details to a project
sponsor with defined responsibilities. He has dVemasponsibility for the project at the
management level including funding, go/no go decishaking and providing resource support.

Project Manager:

The project manager is responsible for planningcaking, managing and closing the project. He
manages day-to-day activities of the project emgutihat requirement related tasks are delivered
on time, within budget, and within scope and astperrequired standards. The project manager
must ensure that proper stakeholder approval ofdfeirements is obtained before progressing
forward with project delivery.

Business Analyst:

The business analyst functions as a bridging elémetween the business users and technical
team. Business analyst elicits, analyzes, docunmemdsreviews the requirements for accuracy
and presents them to project stakeholders forwesigd approval.

Programmer:

Programmers are the technical resources assignegtoject, and may include many technical
roles within a project team, e.g. The Technicald_eaersees the design, code, and test activities
for the technical members of the project team. Dpears also plan the application's transition to
the user community, often working directly with mess analysts and trainers.

Quality Assurance Analyst:

The quality assurance analyst is responsible feummg that quality standards are adhered to by
the project team.

Trainer:

The trainer is responsible for developing userntrgj curriculum materials and delivering
training to end user personnel. These materialbased on the functional requirements.

15

Technical Architect/ Application Architect:

The application architect defines the architectaygbroach and high-level design for a project
solution. The application architect is responsilole determining the technical direction of the
project and the overall structure of the solution.

System Administrator:

The system administrator grants the rights and {gstans in order to provide different security
levels to different roles to ensure secure accegseapplication.

Database Analyst (DBA):

The database analyst is responsible for all teahrspects related to designing, creating and
maintaining project databases.

Infrastructure Analyst:

The infrastructure analyst designs the overall Wward and software infrastructure and
environment needed to meet the application devedop@nd operational requirements.

Data Modeler/ Information Architect:

The information architect is responsible for assgsghe overall data requirements of an
information system project. Information architedemtifies reusable data assets and resolves
enterprise data modeling issues.

Solution Owner:

The solution owner is responsible for defining apgroving the project scope and ensuring that
it aligns with the business strategy. Approvingj@cb scope changes and defining the project
success criteria and measurement are also pdneaksponsibility of the solution owner. (also
see Executive Sponsor).

End User:

The end user represents the group of people iri@nization (and often external to it also)
who will actually interact directly with the softweaapplication.

Subject Matter Expert (SME):

The subject matter expert (SME) provides expeitise particular business functional area. SME
responsibilities are closely tied to defining, appng and using the functional requirements for
the project. SMEs typically work very closely withusiness analysts in identifying and

managing the requirements.

16

Stakeholders:

Stakeholders represent anyone materially affeciethé outcome of the project. Stakeholders
are often a prime source of information when plagrand managing requirements.

1.3 Where a Business Analyst fits in the Bigger &wure:

Now let’s see where the business analyst fitsisllgger picture. When a company or a
department recognizes the need of initiating agutothe high level activities take place in the
following sequence:

1. Project sponsor prepares the project proposal atgditgapproved by executive project
sponsor

2. Once the project proposal is approved, a steepngwttee is formed which writes

project charter

A project manager is appointed and project chastbanded over to the project manager

Project kick off meeting is conducted

Project scope is defined

High level schedule is developed

Quiality standards are identified

Project budget is established

. Possible initial risks are identified

10. Project manager develops the project plan

11. Stake holders involvement is identified and docuteen

12. Communication plan is developed

13.Business case is refined and reviewed

14.Project goes to the project sponsor for approval

15.0nce the project is approved, project team is forme

16.Business analyst joins and receives the scopersatdrom project manager

17.Business analyst identifies the stake holders amBEsSto understand company’s current
business process (AS-IS Report)

18.Business analyst gathers the requirement aboutefiiusiness processes and
new/changed characteristics of the software appicgTO-BE Report)

19.Business analyst performs Business Process Mod@iAlyl) to suggest the process
improvements and optimize business processes

20.Business analyst performs the GAP analysis

21.Business analyst writes business requirement doatifumctional requirement
specification

22.Business analyst develops UML diagrams to commimieguirement to the technical
team

23. Application architect designs the application

24. Application is divided into different modules aritese modules are allocated to the
programmers to be developed on the developmengiserv

25.Programmers develop the modules and perform wstinge

©COoNoOO kW

17

26.0nce the modules are unit tested, they are allddateesters for other type of testing on
test servers

27.0nce the application is tested and all the modalesntegrated, application is handed
over to the business users for user acceptantegt€¢stAT) with actual business data

28.0nce the application is ready to use, project ¢jgeon the production server

29.Business users are trained to work on the new Gaijn

30. Application support team is assigned the task pfiegtion maintenance

If you look at the point no. 16 through point n@, #ou can have some idea about where the
business analyst fits in the bigger picture andtwiigrole and responsibilities are.

Now from chapter 2 onwards, we will cover the resgpbilities of a business analyst step by step
in more detalils.

18

19

CHAPTER 2:

Pre-project Activities

2.1 Analyzing the Enterprise

It is crucial for a business analyst to understidwedorganizational environment, how the project,
different key roles involved in the project and ith@ork in the project supports the entire
organization. Enterprise analysis is a pre-projactivity involving business architecture
initiative which helps to capture the snapshot le¢é business to provide platform to create
meaningful business and functional requirements.

During enterprise analysis, business requiremintuture project investments are recognized
and documented in alignment with business goalgctizes and needs for that investment in
order to identify the most valuable return yieldipmpjects. Enterprise analysis increases the
value; projects bring to the organizations in orttedevelop innovative business solutions to
satisfy the never-ending demand for efficient paidwand services.

While conducting Enterprise analysis, the focustishe enterprise level where considerations
about proposed initiatives traverse across theade. Business analyst plays an important role
working with stake holders and subject matter etspier provide management with the decision-
support information such as business implicatiomser-project dependencies and system
interfaces gathered from the internal organizatioesources and industry expert’'s suggestions.

2.1.1 Defining Business Architecture

Business architecture is the responsibility of bess architects who are usually senior business
analysts having the knowledge of:

* General Business Practices

* Industry Domains

* IT-enabled business solutions

* Current and emerging business concepts, stratagapractices

* How various lines of business within the organ@ainteract with each other

* Business concepts for organizing enterprise knogded

» Standard architectural principles and semanticduding an understanding of how
business issues derive information system (I1S)irements

» Standard business concepts and guidance as toohase them to create organized
information about specific enterprise

Definition:

Enterprise business architecture is a set of dontatien that defines:

* Vision and Mission
* High level functional view of organization

* Organization’s current and future capabilities
* Long term goals and objectives
* Rules, policies, procedures and processes
* Business strategies
» Technological environment
» External environment
» Competencies

+ Stake holders

Purpose:

20

The purpose of business architecture is to prowrdied structure and contexts that guide
selection and management of programs and projects.

Techniques:

1. Zachman Framework:

Objective/Scope
(contextual)
Role: Planner

Enterprise Model
(conceptual)
Role: Owner

System Model
(logical)
Role:Designer

Technology Model
(physical)
Role:Builder

Detailed Reprentation
(out of context)
Role: Programmer

Functioning
Enterprise
Role: User

DATA
What

List of things
important in
the business

Conceptual
Data/
Object Model

Logical
Data
Model

Physical
Data/Class
Model

Data
Definition

Usable
Data

FUNCTION
How

List of
Business
Processes

Business
Process
Model

System
Architecture
Model

Technology
Design
Model

Program

Working
Function

NETWORK
Where

List of
Business
Locations

Business
Logistics
System

Distributed
Systems
Architecture

Technology
Architecture

Network
Architecture

Usable
Network

PEOPLE
Who

List of
important
Organizations

Work
Flow
Model

Human
Interface
Architecture

Presentation
Architecture

Security
Architecture

Functioning
Organization

TIME
When

List of
Events

Master
Schedule

Processing
Structure

Control
Structure

Timing
Definition

Implemented
Schedule

MOTIVATION
Why

List of
Business Goal
& Strategies

Business
Plan

Business
Rule
Model

Rule
Design

Rule
Speculation

Waorking
Strategy

21

Zachman framework provides common structure andsifleation scheme for descriptive
representation of an enterprise. This frameworkal#ishes a relationship between several
components of an organizational structure. Zachiinamework helps to understand how a
fundamental design of an enterprise leads to aiwlgrated and well functioning organization
by unifying these components in one framework.

2. POLDAT Framework:

An alternative, simpler structure that is oftendug®e business process reengineering projects is
the POLDAT (Process, Organization, Location, D&taplication, Technology) framework for
business process reengineering, referred to dddkagon of changer Six domains of change.
This framework provides us with a approach to definthe scope of business transformation
initiatives. The framework yields artifacts suchdmcuments, tables, matrices, graphs, models
and organizes them into the following domains:

Process:

The business processes that flow value from tharazgtion to the customer. What are our
current processes and do we have opportunitiempoove those processes? What is the desired
state of business operations?

Organization:

The organizational entities that operate the bugsimeocesses including the management teams,
staff positions, roles, competencies, knowledge akills. What changes in culture,
competencies, capabilities, teams, organizationd @ainings are required to achieve the
essential business changes? What support systemee@uired to accept the new business
solutions and ensure they operate efficiently?

Location:

The locations of business units and other orgaioizak entities such as distribution centers,
service centers, call centers and payment cenWwisat effects will the change have on
geography, people, infrastructure, data and apgpits? What physical facilities are needed to
deploy the change?

Data:

The data and the information that are the lifeefla@f the organization, flowing through the
processes to accomplish the business functionst Wdwainformation content and structures are
required to meet the organizational goals and dibEin alignment with the strategies defined?
What data security is needed?

22

Application:

The IT application that enables the business psmsedo operate efficiently and provide
decision-support information to management teamisiciiVapplications should be developed or
changed? How will the applications be integrated?

Technology:

The enabling technology that supports the operatioh processes and applications. What
hardware, system software and communication nesvark needed to support the business?
How can we leverage existing and emerging technes@g

In the primary phases of an architecture initiatofea major project, each domain described
above is defined as either in-scope or out of scéptfacts in processes, organization and
locations in POLDAT framework constitute elementshe business architecture and when are
accompanied by the artifacts in data, applicatiot technology, complete the entire enterprise
architecture.

The strength and value of POLDAT framework liestssimplicity. Organizations embarking
on the first iteration of their enterprise architee would do well to first use the POLDAT
framework and then move on to a more comprehergpeoach if appropriate.

2.1.2Conducting Feasibility Study

Feasibility study addresses either a business tssie resolved or business opportunity to be
leveraged. Feasibility study conducts assessmdahegiotential of possible solution options
being considered to satisfy the business needsnmstof financial, functional and technical
feasibility. It provides the executives with a fdaun to develop:

» Viability of an idea for a new business opportunity

» Strategic goals

» Balancing analysis using total cost estimate ded#nt alternatives in order to reach an
optimal solution

* Investment path

2.1.2.1 Feasibility Analysis Technigques

Feasibility consists of four major activities:

Conduct the current state assessment

Plan the feasibility efforts

Identify solution options

Assess the feasibility of each solution option

PwpNPE

And uses the following techniques:

* Organizational chart

» Data flow diagrams

» Technology architecture diagrams

* Process flow diagrams

* Fish-bone diagram (root cause analysis)
* Work break down structure (WBS)

* Business process re-engineering

* Six Sigma

* Market surveys

* Prototyping

» Competitive analysis

* Environmental impact analysis

* Technology advancement analysis

» Cost-benefit analysis

* Pareto diagram

» Decision tables

» Structured problem solving techniques
* Probability analysis

The feasibility study report is typically comprisefithe following information:

* Executive Summary

* Business problem and/or opportunity statement

* Feasibility study requirements, including the besmdrivers of the initiative

» For each option that was assessed, the resule study including:

* A complete description of the solution option

* A complete description of the assessment procassnathods

* A complete description of the overall results; doemt expected vs. actual results,
scoring, and other considerations

» Alist of identified risks associated with the aftative.

» Alist of identified issues which adversely imp#oe success of the solution.

* Assumptions made during the study process to gaps in information.

» Alternative Solution Ranking

* Ranking criteria

* Ranking scores

* Results — recommended solution, including ratiof@le¢he decision

* Appendix containing all supporting information

24

2.1.3Determining Project Scope

Once the feasibility of each solution options isf@ened to identify the most feasible solution, it
is defined in more details. Further elaborationpkelto conceptualize and design the
recommended solution in enough detail to build airfess case, conducting initial risk
assessment and propound a new project propospldgct portfolio management. Elaborating
the scope includes:

» Describing the business environment in enough Id&taprovide context to the new
project

» Describing the business requirements in enoughildetainderstand the need of the
business

» Define the scope of the work performed to deliver product, service or result to meet
the business objectives to prepare time and ctstaes

Scope of the proposed solution is defined withia boundaries of the business problem and
constraints and includes:

» Describing business objective

» Determining expected deliverables at high level

* Documenting business assumptions and constraints
» Building a high level statement of work to be peried

Any one with strong knowledge of the followings cdevelop or elaborate the project scope
statement:

* Project Management knowledge areas and procespsgyrou

* Business process re-engineering concepts and tpemi

» Zachman and POLDAT frameworks

* |ISO standards and CMM model (capability maturitydeld

* General management disciplines such as financiadagement, sales and marketing,
procurement, contracts, logistics, operation plagnstrategic planning, health and safety
practices

* Organizational leadership, motivation, negotiatioi conflict management skills

* Planning, estimating and scheduling skills

» Diagramming, documenting and presentation skills

* ldentifying dependencies and analytical skills

2.1.4Writing a Business Case: Preparation for Go/No Go Bcision

Business case justifies the value addition of ttugept to the business through a detailed cost-
benefit analysis. It also includes quantitative ajdlitative benefits, time-cost estimation for

breakeven point, opportunities, future profit estiilon etc. It is submitted to the management
team and ensures that project funding is warratmexigh the best investment decisions.

25

Developing business case requires expert levelssiil financial analysis, converting project
activities in financial projections, financial mdg@nd technique to project cost-benefit analysis
and forecasting capability.

A business case usually consists of the followings:

* Adequate reasoning for selected solution
» Current business process

* Problem description

* Opportunities

e Assumptions

» Constraints

* Infrastructure analysis

* Environmental analysis

* Project Objectives

* Project scope

* Out of scope

* Project costs-benefit analysis

» Performance measures

» Governance structure and model

» Accountability and operating funding model
* Project deliverables

» Change management and transition plan
« Communication management

* Risk management

* Reporting Structure

* Implementation plan

* Milestones

» Alternatives and decision analysis

» Selection criterion

Project cost-benefit analysis is done through weritechniques such as Discounted cash flow,
NPV (net present value), IRR (internal rate of lejuARR (average rate of return), PBP (pay
back period), ABC (activity based costing) etc.

2.1.5Initial Risk Assessment

Risk assessment is a project management knowledgebat business analyst may need to assist
the project manager in initial risk assessment $iones. Initial risk assessment is an attempt to
determine if project carries more risks than thgaaization can bear. Project risk may have
positive or negative impact on project objectivme, cost, scope or quality of the project. Risk
management processes and documents are updategdttlmat the project life cycle.

26

Project risk assessment needs strong knowledgskofmanagement concepts, change initiatives,
financial analysis and forecasting, risk impacteasment, risk rating development, risk
responses, financial risk analysis and technis&l analysis. Initial risk assessment process along
with rest of the risk management process has bepicted in the following diagram:

Eink Assessment
Rizk ii:_rntiﬂcarim:
Fizk investigation snd dissnosiz

!

Eisk Management Risk

Aanagement Plan

Buszinasz impact analyziz Rizk identification
Fizk aszazzment Cualitative rizk analysiz
Cost-bemafit snalyziz Iz, value analysis raquired
l was / \ Yo
Pnject continuity stratery Fizk respons= plan {uantitative risk snalysiz

Fezpurce allocation
Salttinln 1zlaaza

Eivk Ownership

Monitoring & Control « ¥

Ezcalation

Risk Closure

Fizk closurs

Post implementation seview

The risk management process has been explainddbaration in section 3.2.2

2.1.6Decision Package: Go/ No Go Decision

Decision package is collection of actionable senfdrmation to strengthen the decision of the
management team. Decision package documentatiersrif all the information, facts and data
gathered about the proposed project. It also jastithe next steps in the process, approval of

27

funding for next phases and proceeds with projedtiation, planning and requirement
development.

Preparing the decision package needs adequats skilportfolio management and project
prioritization and selection, writing recommendagand data representation.

2.1.7Project Prioritization

Project prioritization should be done periodicallymake sure that we retain our focus on the
highest-priority projects. At any point of time, arnganization may be running various projects
concurrently. These projects must be in sync wattheother under the relevant programs which
must align project goals with organizational stgateobjectives. Organizations functioning in an

environment of uncertainty may face frequent dicg@l changes in both organizational strategy
and individual projects. If we do not reprioritittee project portfolio, we are always at the risk of
pursuing the wrong projects and wasting time asdueces.

Project prioritization process involves the follogisteps:
SWOT Analysis:

Perform a detailed analysis of strength, weakreggsortunity and threats for each project.

Create your project inventory:

1. Analyze your project portfolio to define individuatojects and programs.
2. Review status of every individual project.
3. Discard projects with status "Completed" or "Fdiled

Align programs and projects with current strategy:

1. Add any new projects under the appropriate progaachbusiness objective. If a new or

old project doesn’t seem to fit under any currengpams or business objectives, then

create a “Misc.” column and file them there for now

Move and/or consolidate projects as appropriate.

Ensure that you reflect any moves or consolidagictivities on the Project Data Sheets

for the respective projects.

4. The output of this step is an up-to-date Prograewvand Project Data Sheet (PDS) for
all projects.

5. The program and project managers should do thik wifiine (i.e., independent from the
management team).

wn

Update the resource estimate:

Once you have updated the project data sheetdl thegrojects, you have current information
to update the resource estimates at both projecpartfolio levels.

28

=

Be sure every effective ongoing project has endoese of the senior management.

2. Ensure that each of the ongoing projects has bémsated with required resources,
including time, funds and HR.

3. Evaluate performance per effective project to emsilirprojects run within acceptable
performance levels.

4. Make an inventory of all projects that are ongoiffgctive, acceptable and resourced.

Review the project details:

Analyze the implementation plan of every project.

Ensure projects are in alignment with your strat@gganizational objectives.

Be sure projects are in alignment with each othdrwith the overall portfolio.

Make sure that in-scope, out-of-scope, project baties, requirements and deliverables
of every project in projects inventory have beepraped.

Estimate time span and important milestones foryepmject.

Develop a matrix that describes goals, objectisespe and time of every project to
comparative view.

PowpbdPE

oo

Establish prioritization criteria:

Work with the C level executives to identify thétera that will be used to prioritize the
projects.

Strategic alignment

Measure all projects available in your inventorythgir ability to comply with strategic goals

and objectives of your company. The criteria shoafteéct the business strategy. They should be
expressed in tangible terms. Examples are:

Relevance
Evaluate every project by the relevance to theaportfolio.

Acceptability
Compare projects against their ability to produceeptable deliverables.

Impact on organization
Define and measure an amount of impact every praje&es to the organization and the
portfolio.

Involvement
Identify the level of involvement of stakeholdemsolved in the project portfolio.

Quality
Evaluate projects against their ability to satigfiality expectations defined by the customer.

Technical success
Assess the project’s probability of technical sissce

29

Completion
Estimate the project’s probability of completionnext quarter or six months.

New business/revenue generation
Identify if project is critical to getting new bungss or generating additional revenue and profits.

Other criteria may include:

* Budget availability

* Total investment

* Return on investment

» Perceived business value on investment
» Payback period

* Value per dollar

» Cost saved

* Financial impact

» Customer impact (both internal and external custejne
* Supply chain impact

* Regulatory impact

» Compliance impact

» Dependency impact

» Operational impact

» Organization’s ability to perform the project
* Project management capability

* Project agility

* Value to the customer

* Risk involved

» Competitive strategic advantage

* Open new market/ opportunity

* Resource capability

Develop project prioritization matrix

Although every organization has its own methodradniizing the projects but project
prioritization matrix development includes mainlyat different models:

1. Financial Model
2. Scoring Model

Financial Model

Financial model includes various financial factr®valuate the prioritization of projects. These
factors include:

30

1. Cost benefits ratio (CBR)
2. Net present value (NPV)
3. Internal rate of return (IRR)
4. Payback period (PP)
5. Economic value added
PP NPV IRR CBR
Calculation Project cost/ Present value % return on Cash flow/
Annual cash flow | revenue/ present project project
value cost investment investment
Neutral Result| PP = Accepted = $0 = Cost of
timeframe capital =1.0
Prioritization PP < Accepted | NPV > Acceptable IRR > CBR >
criteria timeframe amount Acceptable Acceptable
amount amount

Scoring Model:

First each individual criterion is assigned a weigbm 1-10 (1=lowest to 10=highest) as per its
importance to the project and then each individwidrion is evaluated on the rating scale of 1
to 9, the final score of each project is a prodfats weight and its rating. The scale of 1 ts5 i
used to measure the rating as below:

1 = High-high 2 = High-medium 3 = High-low
4= Medium-high 5 = Medium-medium 6 = Medium-low
7 = Low-high 8 = Low-medium 9 = Low-low
Below is an example of scoring model:
New Customer Supplier Success
Project\Criteria Products Relations Relations Probability Weighted
& Weight 10 _ 8 5 5 Total Score
5 3 | 4 | 5 |
Project A — [. T
50 _ 24 20 25 119
4 | 3 | 5 5 |
Project B o '— T T
40 _ 24 25 25 114
1| |5 | 3 3
Project C T '—' T i
10 40 15 15 80
2 |4 | 1 | 2] '
Project D — — — __
20 32 5 10 67

31

All the projects are weighted as per their finabrec One thing to be noted is that in real life

scenario some projects have very high project andtnegative ROI but may be categorized as
“Mandatory” due to being focused on regulatory empliance issues so they may still placed on
much higher priority as compare to other projects.

§ Benefit
Rexources

Prioritization Scoring

Project A

Cost/Benefit Analysis Project B

Risk Analysis —

- I Project D

Alignment with Strategy _ ProjectE
Earned Value T

ProjectC Type

Schedule Budget Resources Risk

Portfolio Management -

2.1.8Project Value Management

Once the projects are prioritized and initiatedyjget budget must be monitored and controlled
through out the project life cycle to ensure thédviy of the business case and continuity of
project funding for the subsequent phases. Projaltte management is performed through
project control gate review process. Project cagiedule, risk assessment and business case are
updated at every key milestone and managementws\aee invited. Project priority is refined

on the basis of current cost and time estimatesdansion for further Go/ No go is taken by the
management.

32

33

CHAPTER 3:

Requirement Gathering

3.1 Requirement Definition

In software engineering, a requirement is a degoripf what a system should do. Systems may
have from dozens to hundreds of requirements.dtrilges a condition to which a system must
conform; either derived directly or indirectly frooser needs. A requirement for a computer
system specifies what user wants or desires fregsém.

SMART Requirements:

Requirements should I8pecific, M easurableAttainable Realizable and raceable (SMART).
Each requirement must be:

* Unique in scope
Is this the only requirement that defines thisipatar objective?

* Precise in wording
Are there any vague words that are difficult terptet?

* Bounded by concrete expectations
Are there concrete boundaries in the objectives?

* lIrrefutably testable
Can you build one or more test cases that will detefy verify all aspects of this requirement?
Example:

“The system response time shall always be reaserfablall critical transactions.”

Revised Answer:

“The system response time for “end-to-end transand? for “Download” shall always be “less
than 5 seconds.”

In nutshell- “Requirement consists of input (data)which are governed by the business rules
(business logics), processes (functionality) and tput (result).”

34

Input >

Input —* (Data)
Input ——» ————*Process (Functionality) » Output (Result)
Input —» Business Fules (Business Logics)

Requirement Types

1. Business requirement

Business requirement defines the broad outcoméseoflevelopment of a system required by a
business. It describes what purpose business desirgolve through the development of an
application. Although it does not describe the gieselements of the application but may
describe the design and quality standards.

“What business wants or desires from a system, Wwhjyou believe will deliver a business
advantage to the business”

Example

Integrate the Sales, Inventory and Purchase apipisato increase the level of collaboration
between the three departments.

2. User requirement

User requirement outlines precisely what the useexpecting from this system. It describes
what user wants or desires from the system whidhh&lp a user to solve certain purpose or
achieve certain objectives.

Example
Integration of Sales, Inventory and Purchase agiptins will help:

1. Sales personnel to make accurate delivery committoezustomer while taking the sales
order.

2. Inventory personnel to determine the re-order lemed re-order quantity more
accurately.

3. Purchase personnel to make a more accurate forecasnhsumption of each material,
place purchase orders only for the quantity des@amed avoid over-stock/ under-stock
situations to decrease the wastage of space inhmase and wastage of material in
inventory.

A good set of user requirements are needed fopagsjgct, especially computer system projects,
to be successful. This is where many projects ifaithat they do not specify correctly what the

35

system should do. In fact many systems have ju=t peren a deadline for delivery, a budget to
spend, and a vague notion of what it should do.

The root of this problem is:

» Computer systems developers rarely have as goadeanof how a business runs and
should run, compared with a business user.

* Business users have little idea of what a comytstem could achieve for them.

* As a result paralysis sets in and business manageimee is concentrated on meeting
timescales and budgets, rather than what is goibhg delivered.

3. Functional requirement

Functional requirements capture the intended behasi the system. This behavior may be
expressed as services, tasks or functions the ngysterequired to perform. Functional
requirements also include behavior rules, standaalgies, and other factors from the customer
problem space that affect what the software need$otto the inputs in order to provide the
specified outputs.

Example
Integration of Sales, Inventory and Purchase agiptins must be able to:

1. Generate the real time inventory status

2. Generate the real time open order count

3. Calculate the re-order level and re-ordexgjitly for each material

4. Forecast the consumption /sales of eachriahte

5. Generate the reports of the periodic consiamprend of each material

4. Non-Functional requirement

Non functional requirements are the properties dlijes of the system required to meet the
architectural requirement of the system in orderathieve or fulfill all other type of
requirements. These emergent properties will suselya matter of accident, not design, if the
non-functional requirements, or system qualities,reot specified in advance.

In an experiment- a number of teams were giverdantical set of functional requirements, but
each had a different design objective: some hadake the system fast, some small to use only
a small amount of computer storage, some easydpais. Each team delivered a system that
met their top objective fully, and other objectitesa lesser degree.

If you do not produce a set of design objectivdsictv are in a priority order, the developers will
produce their own, and these might not be whatwant. In the absence of properly defined non
functional requirement, team may achieve the olyeaf developing a system within time, and
budget but may not meet the quality required. Wesy important for a system to support the

36

business solution by its design solution to meetdbality standards and system performance
requirements.

Non-functional requirements are global constraorisa software system such as development
costs, operational costs, performance, reliabifitgintainability, portability, robustness etc. and
are known as software qualities.

Some non-functional requirement categories andériguestions are described as below:
User Interface and Human Factors

* What type of user will be using the system?

* Will more than one type of user be using the sy8tem

* What sort of training will be required for each ¢ypf user?

* s it particularly important that the system beyetaslearn?

* s it particularly important that users be protedi®m making errors?

* What sort of input/output devices for the humameirfsice are available and what are their
characteristics?

* How system will interface other systems?

Documentation

* What kind of documentation is required?
* What audience is to be addressed by each document?

Hardware Considerations

* What hardware is the proposed system to be used on?
* What are the characteristics of the target hardwackuding memory size and auxiliary
storage space?

Performance Characteristics

» Are there any speed, throughput, or response tonstints on the system?

» Are there size or capacity constraints on the ttabse processed by the system?
* Error Handling and Extreme Conditions

* How should the system respond to input errors?

* How should the system respond to extreme condiions

* Workloads, response time, throughput?

» Available storage space

* Transactions per second

37

System Interfacing

* Isinput coming from systems outside the propogstesn?
* Is output going to systems outside the proposesys
» Are there restrictions on the format or medium thast be used for input or output?

Quiality Issues

* What are the requirements for reliability?

* Must the system trap faults?

* Is there a maximum acceptable time for restartegslystem after a failure?

* What is the acceptable system downtime per 24-petod?

* Is it important that the system be portable (aldentove to different hardware or
operating system environments)?

System Modifications

* What parts of the system are likely candidatesai@r modification?
* What sorts of modifications are expected?

Physical Environment

* Where will the target equipment operate?

* Will the target equipment be in one or several fioves?

 Will the environmental conditions in any way be aftthe ordinary (for example,
unusual temperatures, vibration and magnetic fj@lds

Security Issues

* Must access to any data or the system itself beated?
* Is physical security an issue?
* Who can do what?

Resources and Management Issues

* How often will the system be backed up?

* Who will be responsible for the back up?

* Who is responsible for system installation?

* Who will be responsible for system maintenance?

3.2 Requirements Planning

Requirement planning involves:

» Identification of the key roles involved in thosguirements

38

» Defining of requirements activities that will berfigmed such as Requirement risk
approach, managing the requirements scope, mandmggrgquirement changes and

planning the continuous communication of requirenségtus

» Determination of how those activities will be perfeed on a project

* Well planned requirements ensure the developmenglaf deliverables and define the
success path for the project. Requirement planisinigually overlooked and undervalued
by most of the business analysts and is a rooecaiuthe problems encountered in the
later phases of the project

3.2.1 Identification of the key roles involved inltie requirements

Key roles identification is a crucial and very eggsd component of requirement planning
process. Key roles identification is performed loyprful tools known as RACI and POC

matrix.

RACI Matrix:

RACI matrix defines th&esponsibleAccountable, to b€onsulted and to benformed (RACI)

roles related to a particular requirement. Follapimthe example of a RACI matrix:

F. = responsible for execution (may be shared)
A = final approval for authernty
C =must be consulted

I =must be informed

Major Milestone Executive | Technology | Informatic | SCRUM | Product | Technical | Project Stake
Sponsor Sponsor n Master Owner Manager | Team holder
Security
Officer
Project Charter A I B C - - -
Project Plan A C B I C I I
Legend

POC Matrix

POC matrix identifies and provides the contactnmfation for the primary and secondary
contacts for the project.

39

Role Name/Title/Organization Phone Email
Scrum Master | Harry / CSM/ XYZ Inc AXX-XXX-XEEX harry@xyz.com
Product Owner | Julie /Inventory Manager XYZ Inc. | xxx-3008-33xx Julie@xyz.com

3.2.2 Requirements Risk Management

Requirement risk and management is a subset ohlbyepject risk and management. Most of
the project risks arise due to the low or poor yabf requirements. Requirement risk
management plan consists of the following actisitie

Requirement Risk Management

Risk Planning Risk Response Strategy Risk Monitoring Risk E‘untrul
Initial Risk Identification — Risk Avoidance |— Updating Eisk Status
And Assessment
| g Pisk Mitigation | g Fisk Obszervation

— Bizk Ocewrrence / Trrpact Analysis
— Risk Transference

— Risk Prioritization Rating

L4 PRizk Acceptance

Action Plan Bisk Mitigation Comective Action

Risk Management Process
A. Initial risk identification and assessment

Risk is an uncertainty about the future. Initiatkriidentification and assessment process
identifies the requirements risks that are assedialirectly to specific requirements. The
inclusion or addition of a risk can have a numbeérinopacts on a project’'s risk profile.

Requirements can also have an impact on a projempacity to deliver on its objectives. Certain
requirements may open up risks of regulatory namg@nce, legal issues, PR issues,
unexpected costs or process bottlenecks and sim ¢his case each requirement comes with a

40

cost-benefit-risk profile, and each of those aspewted to be considered when analyzing
requirements.

Positive Requirements Risks

Project requirements can bring a number of posiisks as well as negative risks. For example
your project is changing the internal landscaptheforganization, and as things change new
opportunities arise.

If you are running the first successful agile pcbjgou may change the culture of project
management in your organization for the betteyolf deliver a new system it may be able to be
used to extract non-business cased benefits.

Negative Requirements Risk

» Stakeholders are not engaged properly or earlygmaand so deliver poorly articulated
statements of requirements, and upon receivingin@gents from the BA for validation,
reject them as incomplete or incorrect.

* Changes to the regulatory or legal environment rhaycoming down the pipeline
causing existing requirements to become obsolete.

* Requirements may be overly complex leading to & of poor understanding by the
development team.

» Insufficient time may be allocated to requiremegshering and definition resulting in
gaps or errors in requirements

* Sound requirements development practices must bplesuented with focused and
proactive Requirements Risk Management (RRM). Fesysovided by knowledge of
errors (root causes), defects, and failures thatligely to occur during requirements
development avoiding requirements risk, preventing detecting requirements defects,
and mitigating requirements failures.

B. Risk Occurrence / Impact Analysis
Risk Occurrence:

A risk is an event that "may" occur. The probapibf it occurring can range anywhere from just
above 0% to just below 100%. (Note: It can't becdyal00%, because then it would be a
certainty, not a risk. And it can't be exactly G86jt wouldn't be a risk.)

For the probability, the following scale may bedise

1 = Very Unlikely — 0% to 5% probability

2 = Unlikely — 6% to 35% probability

3 = Likely — 36% - 65% probability

4 = Highly Likely — 66% to 95% probability

5 = Almost Certain — 96% to 100% probability

41

Risk Impact Analysis

A risk, by its very nature, always has a negatmpact. However, the size of the impact varies in
terms of cost and impact on health, human lifesarne other critical factor.

For impact there is a number of different waysdokl at it as risk may impact a number of

different factors within the project such as cogimject schedule, lost opportunity and so on.
The anticipated consequence of a risk, if it occaeeds to be documented for those. For the
impact the following scale may be used:

1 = Almost No impact on scope/cost/schedule/opmaras
2 = Minor impact on scope/cost/schedule/opportasiti

3 = Moderate impact on scope/cost/schedule/oppitigan
4 = Significant impact on scope/cost/schedule/opmities
5 = Project Failure

Below is an example of an impact matrix that maybed. Because all projects are unique, these
factors may not fit in every case. For example @gat with a mandated implementation date

would have project failure with even the slightglgipage in the schedule.

Project 1 Almost No 2 Minor 3 Moderate 4 Significant 5 Project
Impact Impact Impact Impact Impact Failure
Scope Scope change Miner areas of MMajor areas of Scope changes End Product is
barely scope impacted | scopeimpacted | unacceptableto | effectively
noticeable customer Useless
Schedule Insignificant Schedule Orverall Orverall Orverall
scheduls slippage <3% schedule schedule schedule
slippage slippage 5 — slippage 11 — slippage =20%
10%% 20%
Cost Insignificant Cost change Cost change 5 — | Cost change 11 Cost change
cost change <5% 10% - 20% =20%
Quality Chaality Cmly minor Cality Cality End Product is
degradation applications are | reduction reduction effectively
barely affected requires unacceptable to | Useless
noticeable customer customer
approval

By multiplying the probability by the impact youtdemine the Risk Factor. The higher the risk
factor the greater the risk to the project. Thek rfactor may be recorded on the Risk
Management Plan template.

42

The Risk Impact/Probability Chart is another wayr#asuring these dimensions:

The Risk Impact/Probability Chart

-

h

Probability of Occurrence é
=

4

Low Impact of Risk High

» List all of the likely risks that your project faxe

* Make the list as comprehensive as possible.

» Assess the probability of each risk occurring, asdign it a rating. For example, you
could use a scale of 1 to 10. Assign a score oh&ma risk is extremely unlikely to
occur, and use a score of 10 when the risk is ehelikely to occur.

» Estimate the impact on the project if the risk ascu\gain, do this for each and every
risk on your list. Using your 1-10 scale, assiga I for little impact and a 10 for a huge,
catastrophic impact.

* Map out the ratings on the Risk Impact/Probabfltyart.

C. Risk Prioritization Rating:

Since you cannot manage all the risks associatédanproject, you need to prioritize the risks to
determine which ones should be managed. By usigisk factors you can see what risks may
have the greatest impact on the project. Usingittic@mation plus any other information from
the project team and stakeholders, rank the risksiority order from highest to lowest for those
risks having a significant impact on the projecet&mining what risks have a significant impact
on the project and should be ranked depends ormritject and its ability to accept certain
amounts of risk. The priority for the ranked riskay be recorded on the Risk Management Plan
template.

Risk Response Strategy:

When the risks have been identified, analyzed aratifized the next step is to determine how
to respond to each risk. Within the risk responsseygies there are four approaches:

Avoid: This means staying clear of the risk altogether.il&/avoidance obviously is the best
possible course, it might not be feasible in aftwnstances, e.g. the impact of the cost of

43

avoidance might dominate the benefits of avoidimg risk. Avoidance can be accomplished by
changing the process or the resources to attanij@ative or sometimes modifying the objective
itself to avoid the risks involved. An example ebaling risk could be avoiding use of untested
third party components in the software design, woiding inclusion of an inexperienced
resource in the project team.

Avoidance eliminates the cause of the risk suchreassing the scope to exclude that part
involving the risk.

Mitigate: This means trying to reduce the probability andfopact of the risk. Reduction in
probability of occurrence would reduce the likebloof its occurrence and reduction in impact
would imply a lesser loss if the risk event occur®0% mitigation would be equivalent to
avoidance. An example of mitigation would be anlyeaerification of the requirements by
prototyping before moving on to full fledged dev@oent.

Mitigation reduces the probability and/ or the iropaf an adverse risk. This is primarily used
for those risks that are to be managed by the grogam.

Transfer: This implies transferring the liability of risk @ third party. While this strategy does
not eliminate or mitigate the risk or its conseqemitself, it transfers the responsibility of its
management to someone else. Insurance is a classiample of this strategy. By buying

insurance you transfer your risk to the insuranm@many by paying the risk premium. Fixed
Cost contract is yet another example of risk transfrategy. In a fixed cost contract the risk is
transferred to the seller.

Accept: Sometimes we identify a risk but realize that tiered / or resources required to
formulate and enact response strategies overwkehesults of the effort. In such a case we just
accept the risk. If we plan to face the occurreasd is, it is called passive acceptance. On the
other hand if we develop a contingency reserveatudle the situation if the risk occurs, we call
it active acceptance.

Acceptance is accepting the risk as is and doirigimg. This is generally taken for those risks
with low Risk Factors. It may be used for highenkaisks where a contingency plan is
developed. If the risk occurs the contingency jdaout into operation.

Risk Response Plan

For those risks that have a response strategy digadfion, Acceptance, Avoidance or
Transference a risk response plan needs to beapecel

Mitigation - The most common form of managing a risk is thromgtigation. Within this
approach a risk response plan is developed thaepte the various ways the probability and/or
impact of the risk may be lessened. For those dsisg mitigated, the Risk Owner needs to
formulate ideas as to how the risk’s probabilitg/m impact may be reduced. These are general
statements covering the various areas that mayobeeatrated on to lessen the risk. Action
items are then developed to outline specific astithrat will be taken to support those ideas in

44

reducing the probability and impact of the riske$t action items may also be included in the
project plan. A Risk Mitigation template has beepidted below to assist with the process.

Risk Mitigation Template Fields Definition

Risk Description Enter the description of the rskstated in the Risk Management Plan

Risk Iltem Identifier | Enter the risk identificatioamformation, such as Requirements #3, that
was assigned to the risk in the Risk Managememt. Pla

Risk Priority Enter the priority of the risk ast&td in the Risk Management Plan.

Risk Factor Enter the Risk Factor for the risktasesl in the Risk Management Plan.

Risk Response Enter the response strategy being used for thgmglgation,

Strategy avoidance, acceptance or transference) as indicated Risk
Management Plan.

Risk Status Indicate the current status of the nglen, closed, cancelled or on-hold.

Last Updated Enter the date when the Risk Resp@lasewas last updated.

Risk Owner Enter the name of the individual whorisnarily responsible for
managing the risk.

Date Assigned Record the date the risk was assigrineg Risk Owner.

Consequence if Risk Enter a description of the impact/consequenceefidk including

Occurs scope, schedule, costs, and lost opportunity.

Areas where List those areas that may be concentrated on setethe probability of

Probability the risk from occurring.

may be Reduced

Areas where Impact| List those areas that may be concentrated on senethe impact if the

may risk does occur.

be Reduced

Attachments If there are any attachments, pledsecrece them here.

Action Items within this section list all of thenyespecific actions that will be

taken to manage this risk including how the actwiisbe performed
and if appropriate when.

Acceptance: Because no action is taken to manage this riskottlg thing that needs to be
documented in the Risk Response Plan is the coarsequof the risk if it occurs. No additional
planning needs to be developed unless it is deditgda contingency plan will be developed. If
this is the direction then the contingency plandse® be developed and the risk must be
monitored.

Avoidance: Because a change is made to the project, suclviasgethe scope to eliminate the
risk, no Risk Response Plan needs to be develdped. possible that the project change
management process needs to be followed as a eésianges in the project.

Transference: When placing the responsibility for a risk and @snsequence on someone
outside the project, the project team needs to mleated who will bear the responsibility and

45

how the responsibility will be borne. This can leearded in the consequence section of the Risk
Management Plan template.

Considerations in Requirement Risk Strategy:

In order to implement a requirement risk strateffeatively, the following steps should be
followed:

Requirement’s Challenge

* What's hard and what's easy
* What works and what doesn’t
* Why aren’t the basics enough?

Classifying Requirements Problems

» Stakeholder knowledge and behavior
» Information content and presentation

* Requirements development

» Specific problems

» Developing defect and casual profiles

Planning for RRM

» Tailor your specification strategy
* ldentify risks, indicators, and root causes
* Develop, carry out, and monitor an RRM strategy

Avoiding Requirements Risk

* Reduce overall scope
» Delay risky requirements
» Stop early when success is unlikely

Preventing Requirements Defects

* Immerse stakeholders and engage experience

* Discuss and document assumptions and expectations
* Identify minimal sets of marketable features

» Use rich definitions in your glossary

46

Detecting Requirements Defects

* Monitor stakeholder participation
* Analyze spec style and terminology
* Review specs incrementally

Mitigating Requirements Failures

* Design tests early
* Prototype functions and interfaces
* Use incremental development

Conclusions

* Tailoring an RRM strategy
* Recording your experiences

Risk Monitoring and Controlling:

Risk monitoring and control is the process of idgimg, analyzing, and planning for newly
discovered risks and managing identified risks.olighout the process, the risk owners track
identified risks, reveal new risks, implement rig@sponse plans, and gauge the risk response
plans effectiveness. The key point is throughoist phase constant monitoring and due diligence
is key to the success.

The objectives of risk monitoring and updating tare

1. Systematically track the identified risks

2. ldentify any new risks

3. Effectively manage the contingency reserve

4. Capture lessons learned for future risk assassamel allocation efforts

The risk monitoring and updating process occurgrathe risk mitigation, planning, and
allocation processes. It must continue for the diféhe project because risks are dynamic. The
list of risks and associated risk management sfiedewill likely change as the project matures
and new risks develop or anticipated risks disappea

Periodic project risk reviews repeat the tasksdehtification, assessment, analysis, mitigation,
planning, and allocation. Regularly scheduled mtojéesk reviews can be used to ensure that
project risk is an agenda item at all project nmegi If unanticipated risks emerge or a risk's
impact is greater than expected, the planned ragponrisk allocation may not be adequate. At
this point, the project team must perform additloeaponse planning to control the risk.

47

Risk monitoring and updating tasks can vary dependn unique project goals, but three tasks
should be integrated:

1. Develop consistent and comprehensive reportioggalures.
2. Monitor risk and contingency resolution.
3. Provide feedback of analysis and mitigationfiure risk assessment and allocation.

The inputs to Risk Monitoring and Control are:
Risk Management Plan

The risk management plan details how to approadhn@anage project risk. The plan describes
the how and when for monitoring risks. Additionallge Risk Management Plan provides
guidance around budgeting and timing for risk-edaactivities, thresholds, reporting formats,
and tracking.

Risk Register

The Risk Register contains the comprehensive issikgd for the project. Within this listing the
key inputs into risk monitoring and control are thaught into, agreed to, realistic, and formal
risk responses, the symptoms and warning signsskf residual and secondary risks, time and
cost contingency reserves, and a watch-list of polrity risks.

Approved Change Requests

Approved change requests are the necessary adptstite work methods, contracts, project
scope, and project schedule. Changes can impastirngxirisk and give rise to new risk.
Approved change requests need to be reviewed fnenperspective of whether they will affect
risk ratings and responses of existing risks, anflresult in new risks.

Work Performance Information

Work performance information is the status of tlhesluled activities being performed to
accomplish the project work. When comparing theedadled activities to the baseline, it is easy
to determine whether contingency plans need taubénfo place to bring the project back in line
with the baseline budget and schedule. By reviewiogk performance information, one can
identify if trigger events have occurred, if newskriare appearing on the radar, or if identified
risks are dropping from the radar.

Performance Reports

Performance reports paint a picture of the prgegérformance with respect to cost, scope,
schedule, resources, quality, and risk. Comparatgah performance against baseline plans may
unveil risks which may cause problems in the futi®erformance reports use bar charts, S-
curves, tables, and histograms, to organize andrsuire information such as earned value
analysis and project work progress.

48

All of these inputs help the project manager to itwwimg risks and assure a successful project.
Once the risk owner has gathered together allefrtputs, it is time to engage in risk monitoring
and controlling. The best practices provided by Rk&t

Risk Reassessment

Risk reassessment is normally addressed at thesstagetings. Throughout the project, the risk

picture fluctuates: New risks arise, identifieckexhange, and some risks may simply disappear.
To assure team members remain aware of changés insk picture, risks are reassessed on a
regularly scheduled basis. Reassessing risks enaisle owners and the project manager to

evaluate whether risk probability, impact, or urggnatings are changing; new risks are coming

into play; old risks have disappeared; and if rigsponses remain adequate. If a risk's
probability, impact, or urgency ratings changeif aew risks are identified, the project manager

may initiate iterations of risk identification onalysis to determine the risk's effects on the

project plans.

Status Meetings

Status meetings provide a forum for team membesh&we their experiences and inform other
team members of their progress and plans. A dismus¥ risk should be an agenda item at
every status meeting. Open collaborative discussalow risk owners to bring to light risks
which are triggering events, whether and how wadlplanned responses are working, and where
help might be needed. Most people find it diffictdttalk about risk. However, communication
will become easier with practice. To assure thihéscase, the project manager must encourage
open discussion with no room for negative repelionssfor discussing negative events.

Risk Audits

Risk audits examine and document the effectivenéptanned risk responses and their impacts
on the schedule and budget. Risk audits may bedatdt activities, documented in the Project
Management Plan, or they can be triggered wherslibids are exceeded. Risk audits are often
performed by risk auditors, who have specializegegttse in risk assessment and auditing
techniques. To ensure objectivity, risk auditors asually not members of the project team.
Some companies even bring in outside firms to perfaudits.

Variance and Trend Analysis

Variance analysis examines the difference betweeptanned and the actual budget or schedule
in order to identify unacceptable risks to the siche, budget, quality, or scope of the project.
Earned value analysis is a type of variance aralygiend analysis involves observing project
performance over time to determine if performanesegetting better or worse using a
mathematical model to forecast future performaraset on past results.

49

Technical Performance Measurement

Technical performance measurement (TPM) identifdsficiencies in meeting system
requirements, provide early warning of technicadlgems, and monitor technical risks. The
success of TPM depends upon identifying the cokegtperformance parameters (KPPs) at the
outset of the project. KPPs are factors that measamething of importance to the project and
are time/cost critical. Each KPP is linked to therkvbreakdown structure (WBS), and a
time/cost baseline may be established for it. Tiogept manager monitors the performance of
KPPs over time and identifies variances from thenpWariances point to risks in the project's
schedule, budget, or scope.

Reserve Analysis

Reserve analysis makes a comparison of the comiiygeeserves to the remaining amount of

risk to ascertain if there is enough reserve ingbel. Contingency reserves are buffers of time,

funds, or resources set aside to handle risksaties as a project moves forward. These risks can
be anticipated, such as the risks on the Risk Rgifhey can be unanticipated, such as events
that "come out of left field." Contingency resenae depleted over time, as risks trigger and

reserves are spent to handle them. With constramebove monitoring the level of reserves to

assure the level remains adequate to cover renggmmoject risk, is a necessary task.

Outputs of the Risk Monitoring and Control procass produced continually, fed into a variety
of other processes. In addition, outputs of thec@ss are used to update project and
organizational documents for the benefit of futymmject managers. The outputs of Risk
Monitoring and Control are:

Updates to the Risk Register

An updated Risk Register has the outcomes fromassessments, audits, and risk reviews. In
addition it is updated with the resulting outconfeh® project risk and risk response. Was it a
good response, did the response have the desfexd?alhe updated Risk Register is a key part
of the historical record of risk management for greject and will be added to the historical
archives.

Updates to Organizational Process Assets

Organizational process assets should be documanliggit of the risk management processes to
be used in future projects. Documents as the pilityadnd impact matrix, risk databases, and
lessons-learned information, as well as all of pineject files are archived for the benefit of

future project managers.

50

Updates to the Project Management Plan

Updates to the Project Management Plan occur ifagproved changes have an impact on the
risk management process. In addition, these ausdrichanges incur risks which are
documented in the Risk Register.

Recommend Corrective Actions
Recommended corrective actions consist of two types

Contingency plans and workaround plans. A contingeplan is a provision in the Project
Management Plan that specifies how a risk will adted if that risk occurs. The plan may be
linked with money or time reserves that can be wsechplement the plan. A workaround plan is
a response to a negative risk that was passivebpaed or not previously identified.

Recommend Preventative Actions

Recommended preventative actions assure the prig#otvs the guidelines of the project
management plan.

Requested Changes

Requested Changes are any identified changes fardfect management plan. Change requests
are completed and submitted to the Integrated Gh&uantrol process. All requested changes
must are documented, and that approvals at themghagement levels are sought and obtained.

Contingent Response Strategy:

Also known ascontingency planningthis strategy involves development of alternatite deal
with the situation after the risk has occurred.i¥etacceptance of risks leads to contingency
planning, whereby we anticipate a risk to occur mstead of trying to mitigate or eliminate its
occurrence we plan what to do when the event oc€@ostingency reserves are commonly used
tools to handle the occurrence of a risk event.tidgancy reserve can imply allocation of cash,
time or resources to cope with the situation winenrisk event has occurred.

Fallback planscan be developed for high impact risks. A fallbatkn as the name suggests, is
the backup plan, in case the original contingerday ploesn’t work out as planned. An example
could be identification of risk that a certain .ebgrammer will resign in middle of the project.
Since under the current circumstances you can tlingpto mitigate or eliminate the risk you
accept it but develop a contingency plan to hicerain programmer on hourly wages. To cope
with the situation if no programmer is available loourly wages at the time of resignation of
your programmer, you develop a fall back plan ofigerarily moving a software engineer from
a certain low priority project to work on the assigent till an alternative can be hired.

51

3.2.3 Requirements Scope Management

Requirement Scope can be defined as “The worknbatls to be accomplished to deliver a
product, service, or result with the specified fieas and functions.” Requirement is the smallest
unit of a project, every subsequent activity is esbhow and somewhere connected with a
requirement in the background. A poor requiremeitdits to a requirement creep which further
leads to project creep. A project can have a bssiseope creep or a technology scope creep
which may cause a cost overrun. In order to contnel requirement creep, scope of both
functional and non-functional requirements musiriamaged in an efficient manner.

Requirement scope management process includes:

* Requirement Baselining

* Requirement Traceability

* Impact Identification

* Requirement Scope Change ldentification
* Recording Approved Requirements

Requirement Baselining

Once all Business Requirements have been reviewedpproved, théaselinerequirements
are established. Requirement baseline is projépted set of work, including business and
system requirements, milestones & schedule, totek wffort/cost and deliverables. This results
in the creation of the first officidusiness Requirements Document

The baseline document sets the standard for BusiResjuirements and is available to all
Stakeholders. The document forms the basis fowvatk performed on the project for which it
was developed for and identifies an organizati@Xpected capabilities without limiting its
potential to pursue unexpected opportunities. Taseline document also helps determine the
estimated level of improvement that may be achigbedugh the realization of the Business
Requirements.

The baseline is a dynamic document and is orgamicdture. Changes to the Business
Requirements Document continue through out theeptand through out the life cycle of the
document.

Requirement Baseline is of three types:

Functional Baseline

The functional baseline, also known as a requirésnéaseline, is the main product of the
Requirement phaseand is managed in accordance with the FunctionguRements Document

and Data Requirements Document. It also descrilbesenin the lifecycle the functional baseline
will be established and the process by which it el managed for this project.

52

Design Baseline

The design baseline reflects activities performednd) theDesign Phaselts major component

is a system/subsystem specification that defines dherall system design in terms of its
subsystems, the allocation of requirements to |1bs)s and interfaces between subsystems and
external systems. The user acceptance evaluativeriarare defined in the Verification,
Validation and Test Plan. The user acceptance atrafucriteria are an important part of the
design baseline. It also describes where in tlee\tle the design baseline will be established
and the process by which it will be managed fos ghrdject.

Development Baseline

The development baseline, generated during Diegelopment Phasg defines the detailed
structure of the system being implemented. The Idpweent baseline’s major components are
the generation of the computer program code andddtabase. Other components are the
training documentation, user’'s, operations, andnteaance documentation. It also describes
where in the lifecycle the development baselingd bel established and the process by which it
will be managed for this project.

Product Baseline

The product baseline is established duringThsting Phase specifically during the functional
and performance testing. The product baseline’®n@mponent is the end system product as
built by the developers. This includes the follogiin

» Software

* Design and specification documentation

* Manuals (user, operations, maintenance, etc.)
* Installation and conversion procedures

Maintaining the official Business Requirements Doeat, right from the initial version through
all the amendments, is the responsibility of Regignts Manager or the Project Manager. The
baseline is reviewed through out the project tausnscope containment. The review involves
Project Manager and the Quality Management Team.

Requirement Traceability:

Requirement traceability is the ability to followet life of a requirement, in both forwards and
backwards direction, i.e., from its origins, thrbuds development and specification, to its
subsequent deployment and use, and through pesfanisgoing refinement and iteration in any
of these phases. It is a technique to manage #@egels which occur after the requirements are
baselined.

Tracing requirements entails documenting conteXinks between the various requirements and
between the work products developed to implemerd amerify the requirements. The
requirements may include business, user, functiandl test requirements. The work products

53

include requirements documents, design specifioatisoftware code, test plans, test cases and
other artifacts of the development process. Tracumjomer requirements through development
and testing verifies that the customer requiremargsimplemented and tested. A requirements
traceability matrix can simplify this process. éirges as a graphical representation of traceable
relationships between requirements and work predWith a traceability matrix, IT teams can
easily track customer requirements through thexswét development cycle, diminishing the risk
of missing stated or derived requirements, esdgondien developing large, complex systems.
A basic example of requirement traceability maisigjiven below:

User ID User Requirement Description Forward
Req. Traceability
UR 2.1 Emplovee shall insert the Gross annual salary in | FES 3.7 (FRS 3.9 FES 4.2,

“Annual Income™ field to calculate the benefits 3—18/

UE 22 | Emplovee shall insert the “No. of family me FES 20, FES 21 FES

to calculate the Insurance deducti rom the| 24, FRS 2.7

monthly salary

."'_._,..-r"""rf
FRS ID Functiunq!,REtiirirement Specification Baclkward Traceability
FRS3 8 | Systenrshall accept the required data TUR 21
@‘System shall calculate the maximum amount of | UR 2.1
benefits

FRS 4.0 | Svstem shall display “fixed annual bonus™ in | UR 3.2
display mode
FRS 4.1 | System shall display 401K amount in edit mode UE 32

Impact Identification:

Any proposed changes must be made via a formakstcqand must be reviewed in relation to
possible impact on requirements baseline, scogedste, cost, contract, risk, resources and
work in progress. The requirement change may impagtor all of these areas and even an
external interface to another system or a project.

Impact Identification and Analysis is performed twihe help of Impact analysis report which
includes:

* Relative Benefit, Cost, Risk, Priority

» Estimated man hours, Lost man hours, Cost impadditfanal dollars)

» Schedule impact (days), Quality impact, other resquents affected, Other tasks affected

* Integration issues, Life cycle cost issues, oth@emmonents to examine for possible
changes

All the identified requirement changes, additions removals must be documented and
communicated to the stake holders. Once the appiowatained Business Analyst must update
the traceability matrix.

54

Requirement Scope Change Identification

Requirement scope change may occur due to vargasons such as adding new requirement,
removing old in-scope requirement, modifying thereat requirement, omitting a requirement,
fixing a requirement error etc. Some times modiyame requirement entails to changes in other
requirements, making or omitting these may alseeaaquirement scope creep.

Requirement scope identification is performed igrahent with the client's change control
policy. A formal change control process is usedientify, evaluate, trace, report a proposed and
approved requirement change. Approved requirenteange is incorporated in such a way as to
provide an accurate and complete audit trail.

Recording Approved Requirements

Documented record of the approved and incorporaqdirements works as a GPS. It tells the
current status of the project and makes it easidigtire out the direction to the destination. It
also helps one to understand the stake holder'satagons and keep the project team and client
on the same page. Once the change approval anelicpricess is completed, business analyst
is required to update the list of requirement aglirement traceability matrix and each updated
version of these documents has to be approvednétveapproved version of these documents
becomes the new requirement baseline.

3.2.4 Requirements Change Management

The sole objective of developing a software businsslution is to fulfill the customer’s
expectations by meeting the requirement of aligniimg business needs with organizational
objectives and to support the business activitieomanizational, operational and functional
level. In today's rapidly changing business scasarithe changes in business needs are
inevitable and so are the business software regeinés. These requirements may change at any
stage of software development life cycle or evesrdhfter and if not monitored and controlled
effectively, they may lead to a project scope craeg change the whole direction of the project.

Customer’s vision about requirements becomes meeg as they proceed ahead in the process.
Each requirement change can affect not only the,tcost, quality of the software; it may lead
to the change in other related requirements tadaltreg in hiking the time and cost of the project
even further. Unmanaged or poorly managed requinerokanges are the first step towards
project disaster.

Requirements change management is a process afoliogt and managing the proposed
requests to alter the base-lined requirements peirfig the feasibility of alteration by measuring
the level of impact and providing the recommendwatiaccordingly. These change requests may
arise due to different reasons and various soiwggels as “additional functional capabilities” in
the software. Requirements change management gronesves the following steps:

55

Requirements Change Identification and Documentatio

Requirement changes can be identified and propbgedny team member or the customer.
These changes can be related to the technicahotidmal capabilities of the software, business
processes, technology landscape, documentation$hetse requirement changes are recorded in
the requirement change request form and are prdgodée change control board (CCB).

Requirements Change Assessment and Analysis

Proposed requirements changes are assessed foletemegs and a detailed requirement change
impact analysis is performed and severity leveltigad, high, medium, low) of impact is
measured. A requirement change may impact thegirsgope, timeline, budget, quality etc.

Requirements Change Approval

Once the impact analysis is done, it is used t@gse the recommendation and requirement
change request is assigned a status (submittefiegteapproved, rejected or closed). If it is
approved, it may be sent to the PMO or “C” levelfiather approval taking their further input if
necessary.

Determines the final action

A decision is documented through the change recamstysis form and is communicated to
PMO or project executives and team lead. Team fi@dlkder communicates it to the appropriate
business analyst who documents the updated/ mddiiguirement, updates the change request
tracking document or change request tracking systedhrequirement traceability matrix along
with the scope document accordingly and the updstede document reflects the new scope.

©

an ssue

b

Submitted

Evaluated

-

Approved

Onginator submitted

Evaluator performed
mipact analkysis

CCB decided REjE‘CtE‘d

no make

the change

CCB decided to
maka the changs

change was cance ad;

vernfication
failed

b,

Change Made

back out of modifications

Modifier has made
the change and
requested venfication

change Wwas cance ed;

no venfication
required; Modifier
has instalad
modified work

change
.

products

Verified

back out of modifications

Venfier has
confimed the

change Wwas cance ad;

back out of modificetions

e

Modifier has
nstalled modified
work products

-

Closed

A Sample of Requirement Management Process

57

3.3 Requirements Elicitation and Elicitation Techngques

Before | explain about the requirement elicitattenhniques, | would suggest the readers going
through the 3.1 (Requirement definition and typ@sprush up your understanding about the
requirements.

Requirement gathering is the most important tas& biisiness analyst’s job profile. A business
analyst must be dexterous enough to gather a ergant and know if the requirement is a “good
requirement” or not (see 3.1 SMART requirementgqitrement gathering is not only the most
important but also the trickiest task for seveeslsons. Most of the time application users don’t
know what exactly they want and they only have gueaidea of their wish-list. Some times
because of the lengthy and complicated businessegsowhen there is a involvement of too
many users in requirement gathering process, ithefis about the exact process contradict with
each other causing more confusions. In these tgpestuations, it is the responsibility of a
business analyst to demystify the vision of thersisend help them to figure out what exactly
they want and what exactly they actually need. Stimes user may wish to have a feature
which is of very low business value or may even betimportant to have. These types of
unwanted features mostly remain unused or underaisédncrease the total cost of ownership
(TCO) of the application.

It is not quite accurate to say that requiremengsia the minds of clients; it would be more
accurate to say that they are in the social systectient organization. They have to be invented,
not captured or elicited and that invention habdca cooperative venture involving the clients,
the users and developers. The difficulties are Ipasocial, political and cultural and not

technical.

A Standish group research report says that, 318&tl pfojects are cancelled before they ever get
completed and nearly 53% of projects cost almogtettheir original estimates. The reasons are:

» Users have trouble in explaining what they want.

* Developers have trouble in translating user reguar@s into working programs and
databases.

* Both the business world and technology world arestantly changing.

Requirement Gathering Challenges

» Scope and Vision not clearly defined

* No requirement priority is defined as per the pee business value
» Signed-off requirements keep changing

* New requirements get added in the middle of thgepto

» Lack of proper traceability of the requirements

» Users/customers are busy and not available tofgpecjuirements

* Functionality built, rarely or never used

58

Ten Commandments of Requirement Gathering

To be successful at requirements gathering andvi \ygpur project an increased likelihood of
success, follow these rules:

1. Don't assume you know what the customer wants, ask.

2. Involve the users from the start.

3. Define and agree the scope of the project.

4. Ensure requirements are specific, realistic andsonadle.

5. Gain clarity if there is any doubt.

6. Create a clear, concise and thorough requiremeotsindent and share it with the
customer.

7. Confirm your understanding of the requirements \thiga customer (play them back).

8. Auvoid talking technology or solutions until the tegements are fully understood.

9. Get the requirements agreed with the stakehold=fsdthe project starts.

10.Create a prototype if necessary to confirm or eeflre customers' requirements.

Common Mistakes in Requirement Gathering

* Basing a solution on complex or cutting edge tetdmo and then discovering that it
cannot easily be rolled out to the “real world”

* Not prioritizing the User Requirements, for examjpteust have', 'should have', 'could
have' and ‘would have,' known as MeSCoW principle

* Not enough consultation with real users and pliaogtrs

* Focusing on creating a solution without even urtdeding the real problem

* Lacking a clear understanding and making assumptather than asking

* Requirements gathering is about creating a cleancise and agreed set of customer
requirements that allow you to provide exactly wihay are looking for.

Requirement Elicitation Techniques

There are several ways of requirement elicitatidegending on the different situations but the
most important ones are as below:

1. Brainstorming

Brainstorming is used in requirements elicitatiorget as many ideas as possible from a group
of people. Generally used to identify possible sohs to problems, and clarify details of
opportunities. Brainstorming casts a wide net, fdgng many different possibilities.
Prioritization of those possibilities is importdnotfinding the needles in the haystack.

2. Document Analysis

Reviewing the documentation of an existing systean belp when creating AS-IS process
documents, as well as driving gap analysis for sppf migration projects. In an ideal world,

59

we would even be reviewing the requirements thavelrcreation of the existing system — a
starting point for documenting current requiremefigggets of information are often buried in
existing documents that help us ask questions ®pealidating requirement completeness.

3. Focus Group

A focus group is a gathering of people who are espntative of the users or customers of a
product to get feedback. The feedback can be gatredyout needs / opportunities / problems to
identify requirements, or can be gathered to vé&tidand refine already elicited requirements.
This form of market research is distinct from bsaomming in that it is a managed process with
specific participants. There is danger in “follogithe crowd”, and some people believe focus
groups are at best ineffective. One risk is thatewe up with the lowest common denominator
features.

4, Interface Analysis

Interfaces for a software product can be human achmme. Integration with external systems
and devices is just another interface. User cedasign approaches are very effective at making
sure that we create usable software. Interfaceysisal reviewing the touch points with other
external systems — is important to make sure wetdoverlook requirements that aren’t
immediately visible to users.

5. Interview

Interviews of stakeholders and users are criticalcteating the great software. Without
understanding the goals and expectations of thes @sel stakeholders, we are very unlikely to
satisfy them. We also have to recognize the petisgeof each interviewee, so that we can
properly weigh and address their inputs. Like aafgreporter, listening is the skill that helps a
great analyst to get more value from an intervieantan average analyst.

6. Observation

The study of users in their natural habitats is twdtsservation is about. By observing users, an
analyst can identify a process flow, awkward stepain points and opportunities for
improvement. Observation can be passive or actskirfg questions while observing). Passive
observation is better for getting feedback on aqiype (to refine requirements), where active
observation is more effective at getting an unadeing of an existing business process. Either
approach can be used to uncover implicit requirdsnémat otherwise might go overlooked.

7. Prototyping

Prototypes can be very effective at gathering faeklbLow fidelity prototypes can be used as an

active listening tool. Often, when people can ntitalate a particular need in the abstract, they

can quickly assess if a design approach would addiee need. Prototypes are most efficiently

done with quick sketches of interfaces and storgdsaPrototypes are even being used as the
“official requirements” in some situations.

60

8. Joint Application Design (JAD)

More commonly known afequirement Workshopession, JAD can be very effective for
gathering requirements. More structured than anbtarming session, involved parties
collaborate to document requirements. One way pduca the collaboration is with creation of
domain-model artifacts (like static diagrams, dgtidiagrams). A workshop will be more
effective with two analysts than with one, wherfadilitator and a scribe work together.

9. Reverse Engineering

Is this a starting point or a last resort? When igration project does not have access to
sufficient documentation of the existing systenverse engineering will identify what the
system does. It will not identify what the systehrowld do, and will not identify when the
system does the wrong thing.

10. Survey

When collecting information from many people — tmwany to interview with budget and time
constraints — a survey or questionnaire can be.udss survey can force users to select from
choices, rate something (“Agree Strongly, Agree..dh),have open ended questions allowing
free-form responses. Survey design is hard — questian bias the respondents. Don’t assume
that you can create a survey on your own, and @anmgful insight from the results. | would
expect that a well designed survey would providalitptive guidance for characterizing the
market. It should not be used for prioritizatiorfeditures or requirements.

11. Storyboards

Storyboards, also termed "Presentation Scenarios”, are seqaeat images that show the
relationship between user actions or inputs antesysutputs. A typical storyboard will contain
a number of images depicting features such as memlsegue boxes and windows. Storyboard
sequences provide a platform for exploring andnnej user requirements options via a static
representation of the future system by showing thepotential users and members of a design
team.

3.4 Requirements Verification and Validation

Once the requirement is gathered by the businesiysinthe next most important step in the
process is requirement verification and validation.

Requirement Verification

“Requirement verification is a set of activitiesatrensure if the business analyst has captured
the requirement right.”

61

It is a process of proving that each requiremestlteen satisfied. Verification can be done by
logical argument, inspection, modeling, simulatioanalysis, expert review, test or

demonstration. Requirement verification ensureg tha system complies with the system
requirements and conforms to its design.

Common problems in requirement verification
"How do | know we've got all the requirements aadédn't missed something?"
"How can | be sure I've got it all, and got it ajht?"

No doubt these are some of the major questions skeoarselves to ensure we're going to
develop the highest quality system that meets #meathding needs of our clients. This has been
one of the driving objectives of our approach ystematic application of the best interviewing

and modeling practices that gives the analyst thenedge of what they need to do and the
comfort that it has been accurately captured.

"How do you get the users' needs identified quiakly easily?"

Many experts recommend a Requirements Discovergi@esvith business representatives and
an experienced Information Management analyst,guaimethodology based on business data
understanding. Not a conventional requirementsvige/, an RDS is focused on the business
and should apply proven and easy to understand comeation and modeling techniques.

"How do | deal with clients who can't express thelwes, keep changing their minds and
introduce new requirements?"”

An experienced analyst knows what questions tousskg effective communication skills and
easy-to understand modeling techniques. The bigcmste of changing requirements is not
asking the right questions in the beginning. A dampystematic approach leads the analyst and
business users to discover all the information irequents, business rules and functionality,
which results in a complete and accurate businessfgcation the first time.

"How can we build a system when the users worgsinthe time to discuss their needs?"

There's no magic bullet for this issue, but keycsss factors involve applying an approach that
delivers results and is focused on yielding rapid @isible results for business clients. To satisfy
the client, we must know what the client wants, #reh can show that we have addressed those
requirements.

Requirement Validation

“Requirement validation is a set of activities tletsure if the business analyst has captured the
right requirement.”

It is a process of ensuring that:

62

Thesetof requirements is correct, complete, and condisten

A model can be created that satisfies the rements, and

A real-world solution can be built and testeghtove that it satisfies the requirements.
The system does what it is supposed to do innisnded environment. Validation
determines the correctness and completeness ofnitieproduct, and ensures that the
system will satisfy the actual needs of the staldsrs.

PwpNPE

The easiest way to validate a requirement is toyputself in user’'s shoe and ask yourself —

las a (Role of the user)
Wish to have (Feature/functionality of the appltation)
So that | can (Purpose to be solved)

If the objective you wish to achieve through thpedfic functionality of the system is not
relevant to your user role, the requirement youehgathered is not the valid one (again, use the
SMART approach)

Check list for requirement validation

To be consistent, the business requirements sp&iiin should be accurate, complete and clear.
Below is a checklist which represents the attributea quality, standard business requirements
specification.

Accurate

» Are the requirements consistent — not contradiatitgr requirements?

* Are any requirements in conflict with given staggsumptions or constraints (business
environment, technical environment, cost, schedard,resources)?

* Do the requirements support the stated businesterayand project objectives?

» Are all activities and operations necessary? Areidaentified requirements not required
or out of scope?

» Are all data requirements necessary; are any requints not required or out of scope?

Complete

» Are the goals and objectives of the system cleamnty fully defined?

* Have all events and conditions been handled?

 Have all operations been specified? Are they defiicto meet the stated system
objectives?

* Have all objects and data in the activity specifaabeen defined in the model(s)?

* Have all required definitions and rules for objestsl data been defined?

* Does the specification satisfy the level of detaguired by the design team?

» Have all undefined, unresolved, incomplete spedtiibms been identified for resolution?

Clear

63

Are all requirements free of implementation biast(nestricted to a specific design
alternative)?

Are all requirements precisely and concisely stated

Have all operations been stated in terms of theggéring events or conditions,
information requirements, processing and outcomes?

Is the terminology and prose understandable bydseess client/users?

Is there any ambiguity in any of the statement®(aipons, rules, definitions, etc.)?
Have all assumptions been clearly stated?

Compliant

Has the appropriate methodology been used?
Do the deliverables conform to organizational séadd, meet organizational process
objectives, and follow industry standards?

Information Model — Object Specifications

Have all objects been identified?

Have all objects in the Activity Specification begpecified?

Have all data elements been identified?

Has all data in the Activity Specification been cfied?

Have all necessary relationships been defined?

Have all identified data elements been "used"fe¢at created and read)

Have all data items and relationships been coyrecttl precisely defined?

Have all data items been accurately attributetiéocbrrect objects (Normalization)?
Have any Super classes and Subclasses been iel@iatifd specified?

Have redundant or derived data items and relatipasibeen identified (and/or
eliminated)?

Functional Model — Activity Specifications

Have all required activities been specified?

Have all operations been correctly and precisefiyndd?

Have all outcomes of each operation been specified?

Have all standard/best practice/or identified tGfesle operations for each object been
specified?

Do all operations identify the event(s) or condisavhich trigger them?

Do all operations identify the operator (systenuser)?

Do all operations use strong, unambiguous actiobs?

Are all specifications clear and unambiguous?

Is the data used in the operation clearly undedstoo

Do required operations use rules, formulas or donw# to qualify or define the
processing of the operation?

64

* Do all operations specify or clearly imply an outess?
* Has the Context Diagram been updated?

* Have all interfaces and activities in the Contextgdam been specified?

In the final analysis, using the methodological rapgh to business requirements gathering will
enable an organization to collect, segregate, ip@ey analyze and document all the relevant
informational and process needs for the applicatioder design. This understanding of the

business needs for data and process will resulis@able, robust and sustainable systems that
give an organization a competitive edge.

65

CHAPTER 4:

Documenting Requirements
4.1 Requirements Analysis and Documentation

Requirement Analysis

Requirement analysis is also known as requiremegineering. The objective of requirement
analysis is to have a thorough understanding ohbas and users’ needs and break it down into
distinct requirements which are clearly definedje®ed and agreed upon by the stake holders/
users or decision makers. The quality of the eodyct very much depends on the completeness
and accuracy of the requirement representations. fdbus of requirement analysis must be
ensuring that the final system or product confotoslient needs rather than attempting to mold
user expectations to fit the requirements.

Requirement analysis process begins with understgnide users’ expectations from the system,
categorizing those expectations into different tgperequirement categories, analyzing these
requirements to understand what system functioealére required to meet users’ expectations.

For example, a user expresses the following expeotafrom an intranet based system:

“I want the system to display the request for thport sent from my supervisor to me. This
request must not be visible to any other user.dlditike to have several parameters and criteria
on the basis of which system will generate the mepg retrieving data from several different
tables, combining the data sets together and gamgréhe report file which is essentially
nothing but a data file. | should be able to sdvad teport not only to my supervisor but also into
our centralized repository server which arrangégha reports in a chronological order and
displays the names of the senders and receiveisrdport on centralized repository server must
be downloadable by any user with the appropriateaaizations.”

Now if one analyzes the above mentioned user requént, one should be able to figure out the
following required functionalities:

System must be able to:

. Transfer data from user A to user B
. Display the data transferred

. Recombine the distributed data

. Replicate the data

. Locate the data / data sets

. Archive the data

. Transform the data

. Sort the data

. Upload the files

O©CO~NOUILE, WN PR

66

10. Download the files
11. Index the files
12. Define different authorization levels for diat user roles

But one must also ask the unaddressed questiohsasuc

 How many users are expected to upload and downlegfiles at the same time?

* What should be the ideal up load and download time?

» What type of users / roles will be authorized te ge data in the repository?

* How many reports are you expecting to be geneetedyday?

* Should these reports be there in the repositorgviar or they must be automatically
delete/expire after a certain time?

* Do you want the data to be visible in both onlind affline mode?

» Should data support the synchronous / asynchrooperstion?

* Should system display alerts for error messagesaaade a log for the errors occurred?

* Are you expecting the data to be transferred fromtransferred to any external
applications?

* Will any of the data be displayed or used by anyeotuser who is external to the
department?

* Will data go through any firewall server during tiegta transfer process?

Requirement Documentation
Requirement documentation is the process of doctingethe verified and validated system
functionalities in a well organized, sequential @&adily understandable manner. This document

is also known as Functional Requirement DocumeriEwonctional Requirement Specification
(FRD/FRS).

Different companies use their own FRS templates.tBe following examples:

Example 1:

Page Elements

Element Type Location Business Rule Action
User Name | Text Field | Page Mandatory Any Character Captures the user name jas
which should be in database 6 |tiput from the user
20 characters
Password | Text Field | Page Mandatory Any Character Captures the password as
which should be in database input from the user

Must be displayed
as asterisk entries
Must be between 6
to 12 characters
Login Button Page Navigates to Home page

67

Example 2:

Findmejob.com: Home Page

FRSID | FRS Description Business Rule Action
Sub ID
FRS 1.0 User opens the URLSite is only internet Browser open the
www.findmejob.com explorer and Mozilla] website
in the browser Firefox compatible | www.findmejob.com
FRS 1.1 | Home page displays thelocation field Accepts skill set and
fields — skill set and| does not accept location input by the
preferred location numeric value user
FRS 1.2 | Home page displayskind Performs the job
Jobsbutton search and lists the
jobs on the basis of
the criteria used by
the user
FRS 1.2.1| Job listing Must display jobs | Job Title links to a
in chronological job description and
order other details

Functional Requirements should include:

» Descriptions of data to be entered into the system

» Descriptions of operations performed by each screen
» Descriptions of work-flows performed by the system

» Descriptions of system reports or other outputs

* Who can enter the data into the system?

* How the system meets applicable regulatory requerem

The functional specification is designed to be régda general audience. Readers should
understand the system, but no particular techiicaivledge should be required to understand
the document. Functional requirements should ireclushctions performed by specific screens,
outlines of work-flows performed by the system arller business or compliance requirements
the system must meet.

Interface requirements
» Field accepts numeric data entry
* Field only accepts dates before the current date
» Screen can print on-screen data to the printer

Business Requirements

» Data must be entered before a request can be aggprov
» Clicking the Approve Button moves the request @ Approval Workflow

68

» All the personnel using the system will be traiedording to their user roles.
Regulatory/Compliance Requirements

* The database will have a functional audit trail
» The system will limit access to authorized users
* The spreadsheet can secure data with electromatsiiggs

Security Requirements

* Member of the Data Entry group can enter requadtsdit approve or delete requests

* Members of the Managers group can enter or appaaeguest, but not delete requests

 Members of the Administrators group cannot enteamprove requests, but can delete
requests

4.2 Gap Analysis

Requirement gap analysis is a process of analyttiegcurrent state of the system, users’
expectations of the future state and finding thesmig elements to fulfill that gap. A thorough
understanding of the current and future state ®fifstem is very important because if we do not
know where we are currently, we can not figurelmw to reach the destination and what it will
take to reach there.

Gap analysis process is mainly focused on optirgitie business processes and maximizing the
ROI on IT resources. It helps to find out the lo@seiplings and grey areas in the business
processes and utilize them to their optimum poaémtith the help of software applications.

It is a technique for determining the steps todemn in moving from a current state to a desired
future state. Gap analysis consists of:

» Listing of characteristic factors (such as attrégsltcompetencies, performance levels) of
the present situation ("what is"),

» Cross listing factors required to achieve the fitoiojectives ("what should be"),

» Highlighting the gaps that exist and need to bedil

A good example of gap analysis is given below:

End State Current State Gaps/Action
Provide estimate of wait | Callers have no idea howSoftware that will provide
time to caller once they | long they will be waiting.| estimate of wait time to

have been on hold for 15 callers, research vendors and
seconds pricing, get approval
Respond to simple, Emails are answered in | 1. Develop Frequently Askeg

common email questions| the order they are Questions page on website, to

69

within 2 business days received, regardless dfreduce email volume
complexity. 2. “Segment out” simple,
common questions and
respond to those first
Respond to inquiries that| We do not track responsel. Work with Executive

arrive by mail and give ar) time. Secretariat
estimate of response time 2. Consider purchasing
within 15 business days tracking software

Reduce wait time at walk| Many customers wait 1. Increase staff

in offices to 15 minutes of more than 15 minutes. | 2. Make more transactions
less accessible online, so customer
does not have to appear in
person

4.3 Writing Use Cases

What is a Use Case

A use case is a high level functionality of thetegs It is the top level category of the system
functionality and defines stake holder’s goal. Tise case describes the system’s behavior under
various conditions as it responds to a request foomn of the stakeholders, called frémary
actor. The primary actor initiates an interaction wilkte tsystem to accomplish some goal. The
system responds, protecting the interests of alstakeholders. Different sequences of behavior,
or scenarios, can unfold, depending on the padra@quests made and conditions surrounding
the requests. The use case collects together thifdsent scenarios.

Each use case focuses on describing how to achigeal or a task. For most software projects,
this means that multiple, perhaps dozens of usesca® needed to define the scope of the new
system. The degree of formality of a particulatwafe project and the stage of the project will
influence the level of detail required in each case.

Use cases should not be confused with the featfrdse system. One or more features (a.k.a.

"system requirements"”) describe the functional#gded to meet a stakeholder request or user
need (a.k.a. "user requirement”). Each featurebeaanalyzed into one or more use cases, which
detail cases where an actor uses the system. Bacbase should be traceable to its originating

feature, which in turn should be traceable to iitginating stakeholder/user request.

Each Use Case constitutes a complete list of evaitiated by an Actor and it specifies the
interaction that takes place between an Actor hadSlystem. In a Use Case the system is viewed
as opaque, where only the inputs, outputs, andtibimadity matter. Ause casealefines a goal-
oriented set of interactions between external achmd the system under consideratidotors

are parties outside the system that interact vaghstystem. Aprimary actor is one having a goal
requiring the assistance of the systemsekondaryactor is one from which the system needs
assistance.

70

A use case should:

» Describe what the system shall do for the actactoeve a particular goal.

* Include no implementation-specific language.

* Be at the appropriate level of detail.

* Not include detail regarding user interfaces aneests. This is done in user-interface
design, which references the use case and itsdsssinles.

How to write a Use Case

A use case is initiated by a user with a particgtzal in mind, and completes successfully
when that goal is satisfied. It describes the sege®f interactions between actors and the
system necessary to deliver the service that estiiie goal. The Use Case also includes
possible variants of this sequence, e.g., altermagequences that may also satisfy the
goal, sequences that may lead to failure to compleé service due to exceptional
behavior, error handling, etc. The system is tekai® a "black box", and the interactions
with system, including system responses, are aped from outside the system. Thus,
use cases captureho (actor) doeswhat (interaction) with the system, for whatirpose
(goal), without dealing with system internals. Argalete set of use cases specifies all the
different ways to use the system, and thereformegfall behavior required of the system,
bounding the scope of the system. The requirementhhe SRS are each uniquely
numbered so that they may be accounted for in thefication testing. These
requirements should be mapped to the Use Casedtisiies them for accountability.

The meatof the Use Case is the text description. Althoudfeint companies may have their
own customized templates to write the use casesdudlly a use case template will contain the
following:

Guidance for Use Case Template

Document each use case using the template showmeidppendix. This section provides a
description of each section in the use case templat

Use Case ID

Give each use case a unique integer sequence nugebéfier. Alternatively, use a hierarchical
form: X.Y. Related use cases can be grouped ihidgrarchy.

Use Case Name

State a concise, results-oriented name for thecase. These reflect the tasks the user needs to
be able to accomplish using the system. Includaction verb and a noun. Some examples:

* View part number information.
* Manually mark hypertext source and establish lmkarget.

71

* Place an order for a CD with the updated softwarsion.
Use Case History

Created By
Supply the name of the person who initially docutaedrthis use case.

Date Created
Enter the date on which the use case was initigumented.

Last Updated By
Supply the name of the person who performed the negsnt update to the use case description.

Date Last Updated
Enter the date on which the use case was mostthecgaated.

Use Case Definition

Actors

An actor is a person or other entity external ® sbftware system being specified who interacts
with the system and performs use cases to accdmipléks. Different actors often correspond to
different user classes, or roles, identified frdva tustomer community that will use the product.
Name the actor that will be initiating this useeasd any other actors who will participate in

completing the use case.

Trigger

Identify the event that initiates the use casesTould be an external business event or system
event that causes the use case to begin, or il @@uthe first step in the normal flow.

Description

Provide a brief description of the reason for amdcome of this use case, or a high-level
description of the sequence of actions and theooutcof executing the use case.

Pre-conditions

List any activities that must take place, or anpditions that must be true, before the use case
can be started. Number each precondition.

Post-conditions

Describe the state of the system at the conclusidhe use case execution. Number each post
condition.

72

Normal Flow

Provide a detailed description of the user actiand system responses that will take place
during execution of the use case under normal, @ggdeconditions. This dialog sequence will
ultimately lead to accomplishing the goal statedtha use case name and description. This
description may be written as an answer to the tingdizal question, “How do | <accomplish the
task stated in the use case name>?” This is best @® a numbered list of actions performed by
the actor, alternating with responses provided H®y system. The normal flow is numbered
“X.0”, where “X” is the Use Case ID.

Alternative Flows

Document other, legitimate usage scenarios thatatanplace within this use case separately in
this section. State the alternative flow, and dbscany differences in the sequence of steps that
take place. Number each alternative flow in thenf6K.Y”, where “X” is the Use Case ID and

Y is a sequence number for the alternative flow. &mample, “5.3” would indicate the third
alternative flow for use case number 5.

Exceptions

Describe any anticipated error conditions that dadcur during execution of the use case, and
define how the system is to respond to those ciomdit Also, describe how the system is to
respond if the use case execution fails for sonanticipated reason. If the use case results in a
durable state change in a database or the outsidd,8tate whether the change is rolled back,
completed correctly, partially completed with a wmostate, or left in an undetermined state as a
result of the exception. Number each alternatio fin the form “X.Y.E.Z”, where “X” is the
Use Case ID, Y indicates the normal (0) or altewea{>0) flow during which this exception
could take place, “E” indicates an exception, a@tlis a sequence number for the exceptions.
For example “5.0.E.2” would indicate the secondegtion for the normal flow for use case
number 5.

Includes

List any other use cases that are included (“c§llled this use case. Common functionality that
appears in multiple use cases can be split outarsegparate use case that is included by the ones
that need that common functionality.

Priority

Indicate the relative priority of implementing thenctionality required to allow this use case to

be executed. The priority scheme used must be #meesas that used in the software
requirements specification.

73

Frequency of Use

Estimate the number of times this use case wipdréormed by the actors per some appropriate
unit of time.

Business Rules
List any business rules that influence this use.cas
Special Requirements

Identify any additional requirements, such as nodfional requirements, for the use case that
may need to be addressed during design or implatent These may include performance
requirements or other quality attributes.

Assumptions

List any assumptions that were made in the anathsisled to accepting this use case into the
product description and writing the use case desan.

Notes and Issues

List any additional comments about this use casangr remaining open issues that must be
resolved. Identify who will resolve each issue, doe date, and what the resolution ultimately is.

A good and easy example of a use caseWiihdrawing money from ATM The below
mentioned use case not only explains how exaatlseacase is developed but also describes how
to derive functional requirements from a use case:

Use CaseWithdrawing money from ATM
Id: UC-1.0

Description

User inserts the ATM card

User selects the language English

User enters his PIN

User enters the amount

User selects checking account for withdrawal
User selects NO for receipt

User press enters

User receives the money

End of use case

Level:
High level use case

74

Primary Actor:
ATM User

Stakeholders and Interests:
Bank

Pre-Conditions:

Machine must be working

ATM card should be working

User must have money in his account

Post Conditions:
Money is dispensed from ATM

Failure end condition:
If user is unable to receive the money

Minimal Guarantee

For Withdraw Cash (ATM Use Case), minimal guarardeeld be, Customer is logged out of
the ATM system. This minimum guarantee ensures that system will ensure that no
unauthorized withdrawals can be made from the ATiMstprotecting the interest of the Bank
Customer as well as the Bank’s stakeholders.

Trigger:
ATM Machine reads the card successfully.

Main Success Scenario

ATM reads the card

ATM selects the language English

ATM validates the PIN

ATM verifies the amount

ATM withdraws money from checking account
ATM does not generate the receipt

ATM dispenses money

Extensions

Do you want to perform another transaction?

Variations
User enters the language Spanish
User selects YES for the receipt

Frequency: Until user withdraws $400 in 24 hours

75

Assumptions
The Bank Customer understands both English andiS§pemguage

Special Requirements

Performance
The ATM shall dispense cash within 15 seconds ef tequest

User Interface
* The ATM shall display all options and messagesriglish and Spanish languages.
* The height of letters displayed on the display otsshall not be smaller than 0.5 inches.
(Reference - Americans with Disabilities Act, Doa@mxxx, para XxX).

Security
* The system shall display the letters of PIN numhera masked format when they are
entered by the customer. i.e. Mask the PIN withrattars such as ****, Rationale — This
is to ensure that a bystander will not be abledadrthe PIN being entered by the
customer.
 The ATM system will allow user to Cancel the trastgan at any point and eject the
ATM card within three seconds. Rationale — In dagecustomer in duress/in fear of own
security he/she needs to quickly get away.
 The ATM system shall not print the customer’s actooumber on the receipt of the
transaction.
Issues
What is the maximum size of the PIN that a userrcare?

The above mentioned use case can also be used tovdethe functional requirement of the
system:

ReqUC 1.1 The system shall provide an option to withdraw
money

Req UC 1.2 The system shall query the user for the amount of
money

ReqUC 1.3 The system shall query the user for the accour fyp

Req UC 14 The system shall validate the amount is available i
the user’s account before releasing funds to tke Us

ReqUC 1.5 The system shall validate the amount is a mult|ple
of $20.

ReqUC 1.6 The system shall debit the user’s account upon
withdrawal of funds

Req UC 1.7 The system shall be able to issue a specific ampunt
of money to the user.

76

77

CHAPTER 5:

Software Development Life Cycle (SDLC) and Methodalgies (SDM)

While learning various things about software depgient we come across many different terms
being used, likenethod processmode] framework etc. In the following definitions | have tried
to clear the distinction between these:

* Methodology - one specific collection of principles and/or preges

* Methodology Family - a set of alternative methods that exist alongsaizh other

* Framework - a skeleton (for methods) that must be customéegihented before use
* Model - a description that must be implemented by a ndstlogy or framework

Software Development Life Cycle (SDLC):

Software development life cycle describes the wagiphases of software development process
and the sequence in which they are executed.

The software life cycle is typically broken intogdes denoting activities such as requirements,
design, programming, testing, installation, andrafpen and maintenance.

Software Development Methodology (SDM)

Software development methodology can be definedsgstematic approach to software
development that defines development phases andifspethe activities, products, verification
procedures, and completion criteria for each pha#tas a framework that is used to structure,
plan, and control the process of developing an infation system

“Software development models can be broadly dividedh three categories- Linear model,
Iterative model and the combination of the two”.

There are heaps of models and many companies geartbadopt their own models as per there
requirements but radically all these models haveerno less the same pattern. Here | will
describe the most prevalent software developmettiadelogies starting with a basic model:
History of Software Methodologies: An Overview
1970s

» Structured programming since 1969

1980s

» Structured Systems Analysis and Design Methodo(8&@ADM) from 1980 onwards

1990s

* Object-oriented programming (OOP) has been devdlspee the early 1960s, and

developed as the dominant programming methodologyg the mid-1990s.

* Rapid application development (RAD) since 1991.

e Scrum (development), since the late 1990s

2000s

* Extreme Programming since 1999

» Rational Unified Process (RUP) since 2003.
» Agile Unified Process (AUP) since 2005

Now let’s see what these different types of modets

5.1 General Model: (Linear)

Recruitment

In general SDLC model requirements are gathereccanderted into design. Programming code
is generated during implementation and finally itgstis done to confirm the application

h 4

Design

v

developed against the client’s requirement.

Requirement Phase:

This phase produces the deliverable in the forrBudiness requirement document (BRD) and

Implement

4

Testing

Functional requirement specification (FRS). BRDsists of the information:

* Who will be using the system?
* How the system will be used?
* What data will be input to the system?

* What data will be output by the system?

FRS provides detailed information about:

* The functions system should perform

* The business logic which will process the data

* The user interface functionalities

* How the system will store or use the data
* What data will be used by the system?

79

Design Phase:

This phase produces the details of how the systemctually going to work. Design phase
produces the deliverables in the form of Hardwarel &oftware architecture, software
application layout design and UML diagrams.

Implementation Phase:

Implementation phase is the longest phase of SDW€iamay overlap with the design phase
and testing phase. Implementation phase resultshén program coded by the software
developers.

Testing Phase:

Testing phase makes sure that the application deedl confirms the business requirement
gathered in Requirement phase. During this ph&sters test the application to find out the
bugs.

5.2 Waterfall Model: (Linear)

Waterfall model is also known as linear sequetifiaicycle model. Waterfall model is a classic,
most common and simplest model to understand.isnniedel next phase doesn’t start until the
previous phase is fully completed i.e. there i©werlapping of phases and there is “no go back”
too. Each phase has a proper review process anthéo make sure that project is heading in the
right direction and is on the right track.

Requirement

Design

—

Implementation

& unit testing —l

Integration &

System Testing

Operation &
Maintenance

Advantages

» Simple to understand and easy to use
* Rigidity of the model makes it easy to manage bseau
» Each phase has specific deliverables

80

» Each phase has a proper review process
» There is no overlapping of phases.
* Works good for smaller projects where requiremangsvery well understood.

Disadvantages

* Adjusting scope during the life cycle can kill ajact

* No working software is produced until late durihg tife cycle.

» High amounts of risk and uncertainty.

* Poor model for complex and object-oriented projects

» Poor model for long and ongoing projects.

* Poor model where requirements are at a moderdigharisk of changing.

5.3 V-Model: (Combination)

V-Model life cycle also executes on a sequentiah md processes. V model also does not have
overlapping of phases. As compare to waterfall ha#sting is more focused in this model.
Before any coding is done, the testing proceduresli@veloped in the early stages of life cycle.
Execution of processes starts with RequirementforBecoding begins, a system test plan is
developed. The test plan ensures the compliandanationalities with requirements. System
architecture and design is kept under focus inhiigha-level design phase. An integration test
plan is also developed in this phase. Softwareiegtpdn and components are designed and unit
tests are created in low-level design phase. Tipdeimentation phase focuses on the coding the
program. Once program coding is complete, V matetlcle heads towards the right hand side
of “V” and test plan execution commences.

Reguirement System Test System Testing
Plan
High Level Integration Integration
design Test Plan Testing
Y
Low Level] | UnitTest _— Unit
Design Plan Testing

Y
l o Implementation

Advantages

* Simple to understand and easy to use.
» Since the test plans are developed in the eariestaf life cycle, it has greater chances
of success as compare to waterfall model.

81

» Since the new phase can not begin until the prevghase is complete and there is no
“go back”, it is only good for those projects wheeguirements are already understood

not likely to have too much changes.

Disadvantages

* Itis arigid model so adjusting scope is difficaitd expensive.
* No early prototype of the software is produced bseaactual coding begins during the

implementation phase.
* V Model doesn't provide a clear path for problemsrfd during testing phases due to its

rigidity.

5.4 Incremental Model: (Combination)

The incremental model is an intuitive derivationn@fterfall model. In incremental model,
multiple waterfall cycles take place. Each cycléuigher divided into easily managed and
smaller iterations. This model produces workingwafe in the early stage of software life cycle
during the first iteration. Subsequent iterationgdon the initial software produced during the

first iteration.

Requirement

Design

L

Implementation
& Unit Testing

h 4

Integration &
System Testing

L J

Operation &
Maintenance

Advantages

* Produces working software early during the softwidgecycle.

* An agile, not a rigid model — adjusting scope imparatively less costly.

» Testing and debugging is much easier due to smtdiation.

* Risk management is much easier as it is furthedéd/into smaller iterations.

82

Disadvantages

» [Each phase of an iteration is rigid and do not laypeeach other.
» System architecture and design related problemmare likely to occur as requirements
are not gathered up front for the entire softwdeedycle.

5.5 Spiral Model: (Combination)

The spiral model is very similar to the incrementaddel, with more emphases placed on risk
analysis. The spiral model has four phases: Plgniisk Analysis, Engineering and Evaluation.
A software development process repeatedly passesgih these phases in iterations (called
Spirals in this model). In the planning phase, megoents are gathered and risk is assessed
resulting in the development of a baseline spEalch subsequent spiral builds on the baseline
spiral. Risk identification and alternate solutiatevelopment is performed in the risk analysis
phase resulting in the development of a prototybeend of this phase. Software is produced
in the engineering phase, along with testing atetheé of the phase. Customers are required to
evaluate the output of the project to date befloeeproject continues to the next spiral.

The angular component denotes progress, and thasrad the spiral denotes cost in the
following diagram:

Planning Risk Analysis

Requirement Gatlering
!

Customer Evaluation Testing

Evaluation Engineering

Advantages
* Risk analysis is most emphasized
» It works well for long term and “must-not-fail” pjects.
* Inthe early phases of SDLC, the software is preduc

Disadvantages

» Usually a costly model due to high amount of risklgsis.

83

» Lack of risk analysis expertise may result in thdufre of the project.
* Not feasible for short term projects due to higbtow.

5.6 Rapid Application Development (RAD): (Iterative

Rapid Application Development (RAD) is a softwaevdlopment methodology that focuses on
building applications in a very short amount ofeintraditionally with compromises in usability,
features and/or execution speed. It genericallgrni@ss applications that can be designed and
developed within 60-90 days, but it was originatiifended to describe a process of development
that involves application prototyping and iteratdevelopment.

RAD has many core elements including prototypimerative development, time boxing, team
members, management approach, and RAD tools tha ma unique methodology.

Prototyping

A major focus of RAD is the build of a prototypetlwihe objective of jumpstarting design and
flushing out business user requirements. The digc to build a “light-weight” version of the
product in as short amount of time as possibleays if possible. The initial version not only
serves as a prototype and a proof of concepttlalgo serves as a tool for refining requirements.
A quick prototype development is performed with thelp of Computer Aided Software
Engineering (CASE) tools that focus on capturingureements, converting them to a data
model, converting the data model to a databaseganerating code all in one tool.

Iterative Development

Iterative development means incrementally develppunctional versions of an application in
short development cycles. Each version is reviewét the client to provide him with an
opportunity to give feedback, refine requiremeats] view progress. produce requirements that
are input to the next version. The process is itepiaperformed until all the functionalities
have been developed.

Time Boxing

Time boxing means “First we got to make what wedneew in order to save time”. It is the
process of putting off functionalities to the fugurersion of application in order to complete the
current version in as short amount of time as |pbessi

Team Members

The RAD methodology requires small teams consistihtpighly skilled, experienced, multi-

facet, multitasking and motivated members. Develepnteams must have skilled workers with
advance tools (SWAT) approach. Team members shoeilldxperienced in RAD and CASE
tools.

84

Management Approach

Active involvement of management plays a crucidé o minimize the risks of prolonged
development processes. Management must enforcietaasid adamant time boxing.

Traditional Method

Planning Analysis ———» Design ——# Build ——» Test Deploy

Compressed

Requirement = * Design

TR

JAD Irerative Develop

\ Development /

T - - -
User Review ‘ Test

5.7 Rational Unified Process (RUP): (Iterative)

The central focus behind developing RUP was findhegyroot causes of the failure of projects
using rigid “waterfall" model as it does not allamdividual variations of the phases. By and
large the RUP process development, focused onifigiegt and distinguishing the attributes of

failed projects. Although any project’s failureusique in itself but each failure is a resultant of
the various attributes it is not caused by a siagfiebute of the project. RUP has an underlying
object-oriented model, using Unified Modeling Laage (UML).

The structure of RUP process can be explainedtiélhelp of following diagram:

85

Software Development Life Cvcle in RUP

9 Disciplines (6 Engineering + 3 Supporting) / 4 Phases Inception | Elaboration | Construction | Transition
Phase Phase Phase Phase

Business

Modeling

Requirement

Analysis and

Design
Implementation
Test
Deplovment
Configuration
and Change
Management
FPhase Plan 1. Measurement
Plan,
. 2. PRisk Mgmt
g IZ_!IJHISIS of Plan.
L_;' € ori 3. Risk List,
e 4. Problem
Fesolution
Plan,
3. Project
Acceptance
Project Plan
Management
Iternfion 1. Current Iteration Plan
Plans 2. Mext Iteration Plan
Wark 1. Iteration Assessment
Products 2. Project measurements
3. Penodic Status
Assessment
Work Order

¥

3. Issue List

Environment

RUP building blocks

RUP is based on the following building blocks whiekplain what are to be produced, the
necessary skills required and the step-by-stepaeatibn of how specific development goals are
achieved:

* Roles (who) — A Role defines a set of related skdbmpetences, and responsibilities.

* Work Products (what) — A Work Product representething resulting from a task,
including all the documents and models producedenkorking through the process.
 Tasks (how) — A Task describes a unit of work assigto a Role that provides a

meaningful result.

86

Phases
Disciplines Inception . Elabeoration i Cons Transition

: i '
i ; :
Requirements i i i
Analysis and Design : : :
H .i H
Implementation i : =
: i 'y
Test i ' a
i i :
Deployment : ' k]
i []]
Cenfiguration and : : :
Change Management : ' :
Project Management : : : ;

i Const | | Const | | Const | | Tran | | Tran

Initial Elab #1 || Elab #2 41 #9 N 34 40

Iterations

The process model for RUP

In RUP, Software Life Cycle is broken into repetticycles (iterations). Each iteration goes
through the four phases- Inception, Elaborationnsbmction and Transition. Within each
iteration, the tasks are categorized into nineiplises, six "engineering disciplines” (Business
Modeling, Requirements, Analysis and Design, Im@etation, Test, Deployment) and three
“supporting disciplines” (Configuration and Chanddanagement, Project Management,
Environment).

Business Modeling

One of the biggest issues with process enginegsitite lack of proper communication between
Subject matter experts (SMEs) and software enginaed consequently the improper output of
business requirement can not be shaped as a prgpdrto the software development effort.
Business modeling discipline emphasizes on unduistg the client’s organizational structure,
organizational dynamics and vision and aligning tbesiness processes, roles and
responsibilities with the vision. RUP addresses thy describing how to create and maintain
direct traceability between business engineerirfigrtsf and software development efforts with
the help of common language known as business asesc Business use case facilitates a
commonly shared understanding among all stakeh®ldkrhat business process needs to be
supported in the organization. Many projects mayoske not to do business modeling.

87

Requirements

Requirement discipline explains how to elicit stadleer requirements and transform them into
set of work products (BRD/FRS) that can precisetppe the software application to be
developed describing what the system must do. 9b grovides a ground for common
understanding of business needs between stakebolaied software developers. Vision
document and use cases are created as a pas dfgbipline.

Analysis and Design

A design model is the work product of this disaigliwhich serves as a blue print of how the
source code will be structured and written. Theuliline also explains:

« How the functions specified in use case descriptwifi perform in a specific
implementation environment

* How the system fulfils all the specified requirertgen

* How the system is flexible enough to adapt the tional requirement changes

Implementation
A system is realized through the implementationahponents. RUP explains:

* How to organize and abstract the code to implentientaf new components with well
defined functionality of each component

* How to increase the reusability of the existing poments to optimize the utilization of
system in order to maximize the return on investni@®l) of the business

Implementation discipline has major focus on:

» Defining the organization of the code, in termsmplementation subsystems organized
in layers.

* Implementing classes and objects in terms of comapisn (source files, binaries,
executables, and others).

» Testing the developed components as units.

* Integrating the results produced by individual ierpenters (or teams), into an
executable system.

Test Discipline
The Rational Unified Process suggests an iteradjweroach, which means testing continues
throughout the software life cycle. This allows youfind defects as early as possible resulting

in reducing the cost of fixing the defect.

Tests are carried out along four quality dimensiorgiability, functionality, application
performance, and system performané®r each of these quality dimensions, the process

88

describes how you go through the test life cyclplahning, design, implementation, execution
and evaluation. The purposes of the Test discinee

* To verify the interaction between objects.

* To verify the proper integration of all componeaotghe software.

» To verify that all requirements have been correictiplemented.

* To identify and ensure that defects are addressedtp the deployment of the software
» Ensure that all the defects are fixed, retestedcéoskd.

Deployment

The purpose of the deployment workflow is to sustidl/ produce product releases, and deliver
the software to its end users. It covers a widgeaof activities including:

* Producing external releases of the software.
» Packaging the software.

» Distributing the software.

* Installing the software.

* Providing help and assistance to users.

In many cases, this also includes activities ssch a

* Planning and conduct of beta tests.
» Migration of existing software or data.
* Formal acceptance.

Although deployment activities move around the $ition phase, many of the activities need to
be included in earlier phases to prepare for depnt at the end of the construction phase.

Configuration and Change Management

The Change Management discipline in RUP deals whtlkee specific areas: configuration
management, change request management, and Stdtogeasurement management.

Configuration managementis responsible for the systematic structuring ef pinoducts. Work
products such as documents and models need todee wersion control and these changes must
be visible. It also keeps track of dependenciewden artifacts so all related articles are updated
when changes are made.

Change request managemenkeeps track of the proposals for change as duhegsystem
development process many artifacts with severaioes exist.

Status and measurement managementhange requests have states such as new, logged,
approved, assigned and complete. A change reglsesthas attributes such as root cause, or
nature (like defect and enhancement), priority @ticese states and attributes are stored in

89

database so useful reports about the progrese @irtect can be produced. Change requests can
be maintained with the help of rational productezhlClearQuest.

Control helps avoid costly confusion, and ensunes tesultant artifacts are not in conflict due to
some of the following kinds of problems:

Simultaneous Update:When two or more workers work separately on theesartifact, the last
one to make changes destroys the work of the former

Limited Notification: When a problem is fixed in artifacts shared by ssvdevelopers, and
some of them are not notified of the change.

Multiple Versions: Most large programs are developed in evolutionatgases. One release
could be in customer use, while another is in tast] the third is still in development. If
problems are found in any one of the versions,sfireed to be propagated between them.
Confusion can arise leading to costly fixes andvoek unless changes are carefully controlled
and monitored.

Configuration and change management discipline igesvguidelines for managing multiple
variants of evolving software systems, trackingekhiersions are used in given software builds,
performing builds of individual programs or entmeleases according to user-defined version
specifications, and enforcing site specific devalept policies. This explains how to manage
parallel development, development done at mulsgks, and how to automate the build process.
This is especially important in an iterative pracedere you may want to be able to do builds as
often as daily, something that would become imgssivithout powerful automation. It also
describes how to keep an audit trail on why, whed By whom any artifact was changed
encompassing change request management, i.e. heydd defects, manage them through their
lifecycle, and how to use defect data to track peeg and trends.

Project Management

Project planning in the RUP occurs at two levelserg is aPhaseplan which describes the
entire Project and a series of fine-grainedlteration plans which describe the iterations.
Project management discipline emphasizes on theriat aspects of an iterative development
process- Risk management, Planning an iterativgegrothrough the lifecycle and for a
particular iteration, and Monitoring progress ofitnative project, metrics.

This discipline of the RUP does not attempt to c@lkeaspects of project management such as:
Managing people (hiring, training etc.), Managingdget (defining, allocating etc.), Managing
contracts with suppliers/customers etc.,

The project management discipline consist®lains and Artifacts that are used to control the
project and monitoring its performance. Such Pkes

« The Phase Plan
* The Iteration Plan

90

Phase plan

Each Phase is treated as a project, controlledregasured by th8oftware Development Plan
which is grouped from a subset of monitoring plans:

The Measurement Plandefines the measurement goals, the associatedcmetand the
primitive metrics to be collected in the projecitonitor its progress.

The Risk Management Plandetails how to manage the risks associated wittoggt. It details
the risk management tasks that will be carried assjgned responsibilities, and any additional
resources required for the risk management acti@tya smaller scale project, this plan may be
embedded within the Software Development Plan.

The Risk listis a sorted list of known and open risks to thggqmto sorted in decreasing order of
importance and associated with specific mitigabogontingency actions.

The Problem Resolution Plandescribes the process used to report, analyze,resmve
problems that occur during the project.

The Product Acceptance Plandescribes how the customer will evaluate the dedivie
artifacts from a project to determine if they magiredefined set of acceptance criteria. It details
these acceptance criteria, and identifies the mtoacceptance tasks (including identification of
the test cases that need to be developed) thabevdhrried out, and assigned responsibilities and
required resources. On a smaller scale projed,plain may be embedded within the Software
Development Plan.

Iteration plan

The iteration plan is a fine-grained plan with mdisequenced set of activities and tasks, with
assigned resources, containing task dependencrabgefiteration.

There are typically two iteration plans active iy @oint in time.

The current iteration plan is used to track progress in the current iteration.
The next iteration plan is used to plan the upcoming iteration. This pk&prepared toward the
end of the current iteration.

To define the contents of iteration you need:

* The project plan

* The current status of the project (on track, lEege number of problems, requirements
creep, etc.)

» Alist of scenarios or use cases that must be cetegblby the end of the iteration

» Alist of risks that must be addressed by the drtieiteration

A list of changes that must be incorporated in gneduct (bug fixes, changes in
requirements)

91

» Alist of major classes or packages that must Ineptetely implemented

These lists must be ranked. The objectives of titerashould be aggressive so that when
difficulties arise, items can be dropped from tieeations based on their ranks.

Therefore there is a set of supporfatifacts that help in measuring and building each iteration
plan.

Work Product
IBM replaced the term "artifact” with the term "vkgoroduct”. The work products used are:

The Iteration Assessmentaptures the result of an iteration, the degreehich the evaluation
criteria were met, lessons learned, and changles tione.

The project measurementsare the project's active repository of metrics déit@ontains the
most current project, resources, process, and ptodeasurements at the primitive and derived
level.

The periodic Status Assessmentrovides a mechanism for managing everyone's expeas
throughout the project lifecycle to ensure thatekpectations of all parties are synchronized and
consistent.

The work order is the Project Manager's means of communicating whie staff about what is
to be done and when it is to be completed. It bexsoan internal contract between the Project
Manager and those assigned responsibility for cetigpl.

The Issues Listis a way to record and track problems, excepti@smmalies, or other
incomplete tasks requiring attention.

Environment

This discipline provides the software developmengianization with the software development
tools, templates and processes which are requireshtip the software development team to
support the project.

5.8 Agile: (Iterative)

Agile is not a single approach to software develepmit is a family of methodologies. As the
name suggests Agile is “being able to quickly clemtrection”, it refers to a group of

methodologies which focuses on the agility of thstem by emphasizing on the high level of
involvement from stakeholders open collaborationtween team members, Iterative
development and adaptability of processes. Agiléhods have many things in common with
RAD except RAD focuses on building a prototype fa first step whereas agile focuses on
building a working release version initially.

92

Some of the principles behind the Agile Manifeste: a

» Customer satisfaction by rapid, continuous delivadryseful software
» Working software is delivered frequently (weekseatthan months)
» Working software is the principal measure of pregre

* Even late changes in requirements are welcome

* Close, daily cooperation between business peoplelanelopers

» Face-to-face conversation is the best form of comoation (Co-location)
* Projects are built around motivated individualspveimnould be trusted
» Continuous attention to technical excellence armbigtesign

* Simplicity

» Self-organizing teams

* Regular adaptation to changing circumstances

Agile team usually has 5-9 members. Each agile teamtains a customer representative (CR).
The CR is appointed by stakeholders to act on thelralf and be available for developers to
answer mid-iteration problem-domain questions. & &nd of each iteration, CR evaluates the
outcome of the iteration on the basis of the bissinalue perceived before the iteration and
stakeholders review progress and re-evaluate pesrwith a view to optimizing ROI and
ensuring alignment of development progress withiazuer needs and company goals.

Agile implementation uses a formal daily face-todacommunication among team members.
This specifically includes the customer represérdatand any interested stakeholders as
observers. In a brief session, team members rép@ach other what they did yesterday, what
they intend to do today, and what their roadblaales This standing face-to-face communication
prevents problems being hidden. Team compositi@niagile project is usually cross-functional
and self-organizing without consideration for amyseng corporate hierarchy or the corporate
roles of team members. Team members normally tegponsibility for tasks that deliver the
functionality iteration requires. They decide indivally how to meet iteration’s requirements.
This helps minimize overall risk, and lets the pobjadapt to changes quickly. Agile emphasizes
working software as the primary measure of progrébss, combined with the preference for
face-to-face communication, produces less writtecuchentation than other methods - though,
in an agile project, documentation and other artsfaank equally with working product. The
agile method encourages stakeholders to prioritizen with other iteration outcomes based
exclusively on business value perceived at thervexgg of the iteration.

5.9 Scrum: (lterative)

Scrum is iterative incremental development appro&dium is a set of predefined roles and
practices. These roles are categorized in to caesg@igs and ChickensPigs are the ones who
are committed to the project and if project faiteey have their bacon on the line” whereas
chickens are the ones who are “involved” but nammitted” in the Scrum process. System
functionalities are determined 8crum meetingand brought int&print and usually come from
the Backlog of the system functionalities and are documentedutih Artifacts. Now let’s see
how these roles and processes work in Scrum:

93

Pig Roles

Product Owner

The Product Owner represents the customer. He enthait the Scrum team aims and shoots the
"right birds". The Product Owner writes customemce items (typically user stories),
prioritizes them and then places them in the prodacklog.

Scrum Master

Scrum Master’s prime responsibility is to ident#figd remove the hurdles before the sprint starts
so that the sprint team must encounter as littltambes as possible in order to maintain their
speed. Since the Team is self organized, the Sdfaster is not a team leader but acts as a
buffer between the team and any hindering forcés. Scrum Master as facilitator of the Scrum
makes sure that the Scrum process is heading inghedirection and as planned. The Scrum
Master is the show-anchor who keeps the teams édcas their task and don’t let them go off
the track while they sprint.

Team

The team has the responsibility to deliver the pobdA team is typically made up of 5-9 people
with cross-functional skills and usually consists designers, developers, testers, technical
communicators, etc.

Chicken Roles

Although chickens are only “involved” in the Scrupnocesses but their engagement in the
project is as important as any other role. Chickgansicipate in the planning, development and
review processes by providing feedback. The pewplelved as chickens ar@&usiness users,
Stake holders and ManagerManagers facilitate the environment for softwaevelopment
organizations.

Scrum Meeting

Scrum meetings are also known as “daily standupabse they are time boxed to no longer than
15 minutes and no one is allowed to sit duringgtreim. It helps strictly enforce the time box.

Scrum meetings start strictly on time, are condlici the same time and same location
everyday, project status is reviewed and only @gs allowed to speak during the meeting.
Every team member answers the three questiong iméeting:

* What have you done since yesterday?
* What are you planning to do by today?
* Is there any obstacle preventing you to achieve goal?

Sprint Meeting

Sprint meetings are conducted in three phases:

94

Sprint Planning Meeting
Every sprint cycle lasts for 15 to 30 days. It feesion:

» Activities to be completed during the current sprin
» Making a Sprint backlog of the activities and tlx@ected time line
» Activities completion target for the next eight heu

Sprint Review Meeting
Sprint review meeting focuses on:

* Reviewing the activities completed/not completaérahe current sprint
» Demonstrate the completed task to stakeholders

Sprint Retrospection Meeting
Sprint retrospection meeting focuses on:

* Ensuring all the team members properly retrosgersprint completed

» Discussing what went well during the sprint comgdiet

» Discussing the scope of improvement in the nexinspvith emphasis on maintaining
perpetual improvement

Artifacts
Scrum artifacts are the work products of differantivities done during the Scrum. Basically
there are three types of artifacts-

Product Backlog

Product backlog documents the required featuremipzied by the perceived business value.
This is a high level document which can be editgdyone. Product backlog is a property of
the product owner and helps him adjudging the pyioof the required functionalities and
expected time line.

Sprint Backlog

Sprint backlog documents the features to be bumilhe next sprint. These features are further
segregated into tasks on the basis of 4-16 hoursnd line. These tasks are picked (not
assigned) by the team members according to thdis glnd project priority. Task status is
depicted on théask boardas “to be done”, “under progress” or “completedrit backlog is a
property of the team.

Burn-down Chart
Burn-down chart provides a “quick glance” of theispprogress. It is updated on daily basis
and displays the remaining activities of the sprint

95

Following diagram shows an easy visualization ef&trum:

Product Backlog Sprint Backlog Sprint Release Version

5.10 Extreme Programming (XP): (Iterative)

XP is a member of agile family and emphasizes ensiystem’s responsiveness to the client’s
requirements. Agile family methodologies, in geheexcept the fact that “vision becomes
clearer as we move ahead”. Gathering all the reqent beforehand is a very unrealistic
approach. On going requirement additions and cleigya part and parcel of a SDLC process
and it increases the system’s adaptability to reguent changes at any point of time. It also
suggests that attempting to elicit all the requeata beforehand usually results in spending
more time and efforts in controlling the requiretseion later stages. Risky projects with
dynamic requirements are perfect for XP.

2.10.1 Objective

XP organizes people to produce higher quality safévmore productively. In the traditional
software development models, most of the requirénsegathered beforehand and thus the cost
of making changes on the later stage is higher.aX®mpts to reduce the cost of change by
having multiple short development cycles than aglome. It strives to embrace the changes
instead of “working against the changes”.

2.10.2 Activities

Four basic activities have been defined in XP:

Coding: XP emphasizes most on programming as it assumesrihatrue product of a software
development process is code. Code also helps tiggggmmer to communicate the programming

problems with each other. It can not be interprétetdore than one way.

Testing: Every piece of the code goes through the unitiigstind acceptance testing multiple
times to ensure the bug free software which mattieeactual customer requirements.

96

Listening: Programmers have to listen carefully the custonredsirement and understand what
business logic is required to understand the requent. Communication between programmer
and the customer plays a vital role in XP.

Designing:once the coding and testing is done, a designtateics created to organize the logic
and minimizes the dependencies in the system. Al gesign makes sure that changing one part
of the system will not affect other parts of thetsyn.

2.10.3 Values:

Extreme programming explains five values:

Communication: XP emphasizes on shared view of system betweerdeéirelopers which
matches the customer expectations. It recommenislével of collaboration between users and
programmers, frequent verbal communication andlaedeedback.

Simplicity: XP strongly suggests starting with a simplest sotuby focusing on “only what we
need today”. Coding and designing for uncertainrineeds involves the risk of spending time
and resources on something which we may never ri@etple design with simple code also
improves the quality of communication.

Feedback:XP involves feedback —

* From the system (continuous unit and integratgsting)
* From the customer (continuous user acceptandadgst
* From the team (time estimation by the team ta@azusr’'s new requirement)

Courage: Frequent requirement changes and continuous reifagtof the code produces loads
of obsolete code which is unusable on a later sRggrammers must have courage to throw the
obsolete code away no matter how many efforts weade to create the code. They must also
have a courage to be persistent enough by strteisglve the customer’s problem.

RespectDue to the frequent of interaction between the Edpam members must have respect
for each other’'s work. No one should feel ignoreduieappreciated. This ensures high level of
motivation and commitment.

2.10.4 Rules:

There are two categories of Rules in XP:

Rules of engagement:

* Business people and developers must work together

* Open progress review results as per customer’scéadgens and priority
» Continuous refactoring of code and team efficieinegrovement

* Honest communication

97

* Alignment of authority and responsibility
Rules of Play:

» Continuous testing

* Quality of the code

e Common vocabulary
* Shared authority

2.10.5 Principles:

Feedback:XP explains time between an action and its feedbsckery important to making
changes and learning. Change may affect a patieosystem which is not in the scope of a
developer’s task so he will not notice the flaw dhid flaw is more likely to appear when the
system will be in production stage. Unit test is edfective way to contribute to the speedy
feedback.

Assuming Simplicity: XP assumes that reusability of the code makes mpticated. While
writing the code it is to be assumed that the cadenot be used again and even may be
obsolete on a later stage. So having an assumgpitiextreme simplicity of the solution to every
problem helps in understanding and communicating $lolution to others and making
incremental changes further on.

Embracing Change:If at one of the iteration meetings, customer’'sursgment changes
dramatically, programmers have to embrace the ahamg plan the new requirement for the
next iteration.

2.10.6 Practices:
XP has the various following practices:

» Pair Programming

* Planning Game

» Test Driven Development

* Whole Team

» Continuous Integration

* Refactoring or Design Improvement
* Small Releases

» Coding Standards

» Collective Code Ownership
» Simple Design

* System Metaphor

» Sustainable Pace

98

5.11 Dynamic System Development Methodology (DSDM):
(Iterative and Incremental)

DSDM Atern is the latest version of DSDM methodgloDSDM Atern is the agile framework
for management and delivery of IT and Non-IT prtge@he best use of Atern is seen:

* On larger projects as it is highly scalable

* When a demonstration of a prototype is essentiatjyired

A large number of stake holders necessitating teednfor large scale facilitated
workshops

DSDM project consists of 7 phases and 9 principlé®se 9 principles must confirm to the 4
values of agile manifesto.

2.11.1 7 Phases of DSDM

Pre-project phaseincludes project suggestion and selection of a gge@ project. The pre-
project phase determines if a project should bkzeshat all.

Feasibility Study addresses the definition of the problem, likelytassessment and technical
feasibility of delivering a system to solve busmesoblem.

Business Studyprovides the platform for all subsequent work oitde decided that DSDM is
an appropriate method framework.

Functional Model Iteration focuses on building the high level processing am@rmation
requirements identified during the business stuelyit refines the business based aspects of the
system.

Design and Buildphase leads to the development of a high standaygstem engineered to be
safely placed in the hands of users.

Implementation phase encompasses the cutover from developmepetatmn.

Post Project focuses on measuring the performance of deploysteisyand to check if any
further enhancements are required.

99

Feasibalioy

Business
Sy

Agree plan Tru.pl.cml:ntm
reate e
Fo Functonal™, Idenr q e e B‘I-Hﬂ
fuac i

B Miodel S mp]ﬂ'l"l.ﬁ: Clile Ur,:r-,
Ttesation P‘-mo/j
'cf'u_'s’Eﬂ:n:—n'pe TReT appEoV 53 pundelis

reate desims prototy

2.11.2 Nine Principles

Active user involvement is imperative

Teams must be empowered to make decisions
Focus on frequent delivery

Fitness for business is criterion for acceptedveedibles
Iterative and incremental development is mandatory
All changes during development must be reversible
Requirements are base-lined at high level\

Testing is integrated through out the life cycle
Collaborative and Co-operative approach

©CoNokrwNE

2.11.3 4 Values

Individual’s Importance
Agile manifesto claims the importance of “humantdat Principles 1 and 2 confirm to this
value.

Working Software
Principle 7 ensures the development of a workinftwswe as it places the business needs at
crucial positions.

Collaboration
Principle 9 confirms to Collaboration value of DSDM

Responding to Change
Principle 6 and 7 confirm to this value by welcomiand managing changes through the
prioritization of requirements.

100

101

CHAPTER 6:

UML Diagrams for Business Process Modeling

UML Diagrams

The heart of object-oriented problem solving is¢bastruction of a model. The model abstracts
the essential details of the underlying problenmfiits usually complicated real world. Several
modeling tools are wrapped under the heading obtiifie , which stands for Unified Modeling
Language™. The purpose of this course is to prasgdrtant highlights of the UML.

At the center of the UML are its eight kinds of nebdg diagrams, which we describe here.

Use case diagrams

Class diagrams

Object diagrams

Sequence diagrams

Collaboration diagrams

State Chart diagrams

Activity diagrams

Component and Deployment diagrams

ONOOAWNE

Why is UML important?

Let's look at this question from the point of vieiwthe construction trade. Architects design
buildings. Builders use the designs to create gkl The more complicated the building, the
more critical the communication between architext builder. Blueprints are the standard
graphical language that both architects and busldasst learn as part of their trade.

Writing software is not unlike constructing a burlg. The more complicated the underlying
system, the more critical the communication amoregy®ne involved in creating and deploying
the software. In the past decade, the UML has esdeag the software blueprint language for
analysts, designers, and programmers alike. kg part of the software trade. The UML gives
everyone from business analyst to designer to progrer a common vocabulary to talk about
software design.

The UML is applicable to object-oriented problenivsw. Anyone interested in learning UML
must be familiar with the underlying tenet of oltjedented problem solving -- it all begins with
the construction of a model. odelis an abstraction of the underlying problem. @benain is
the actual world from which the problem comes.

102

Models consist obbjectsthat interact by sending each othegssagesThink of an object as
"alive." Objects have things they knoettfibutes) and things they can dbéhaviorsor
operations). The values of an object's attributes deterntmstate

Classesare the "blueprints” for objects. A class wrapslaites (data) and behaviors (methods
or functions) into a single distinct entity. Objgetreinstancesof classes.

6.1 Use Case Diagrams

Use case diagramdescribe what a system does from the standpoint efxternal observer. The
emphasis is owhata system does rather thow.

Use case diagrams are closely connected to scenArsgenariois an example of what happens
when someone interacts with the system. Here ¢gaasio for a medical clinic.

"A patient calls the clinic to make an appointmiemta yearly checkup. The receptionist finds
the nearest empty time slot in the appointment myakschedules the appointment for that time
slot."

A use casas a summary of scenarios for a single task or.gaakctor is who or what initiates
the events involved in that task. Actors are sintplgs that people or objects play. The picture
below is aMake Appointment use case for the medical clinic. The actor iPadient. The
connection between actor and use casecEamunication association(lor communication for

short).
cummunicatiun
actor % Make Appmntment

Fatient

- Use case
Actors are stick figures. Use cases are ovals. Qamations are Ilnes that link actors to use
cases. A use case diagram is a collection of gaieescases, and their communications. We've
put Make Appointment as part of a diagram with four actors and foureceses. Notice that a
single use case can have multiple actors.

Cancel Appointment 5&
Scheduler
Fatient Make Appointment

Request Medication %

Dactor

7S

Clerk

Fay Bill

Use case diagrams are helpful in three areas.

103

» Determining features (requirements) New use cases often generate new requirements
as the system is analyzed and the design takes.shap
 Communicating with clients. Their notational simplicity makes use case diagra
good way for developers to communicate with clients
* Generating test casesThe collection of scenarios for a use case maggest a suite of
test cases for those scenarios.

6.2 Class Diagrams

A Class diagramgives an overview of a system by showing its classed the relationships
among them. Class diagrams are static -- theyalisphat interacts but not what happens when
they do interact. The class diagram below modetsstomer order from a retail catalog. The
central class is th®rder. Associated with it are th€ustomer making the purchase and the
Payment A Payment is one of three kindsCash, Check, or Credit. The order contains
OrderDetails (line items), each with its associatiéeim.

Customer

name
address

Order

0>

abstract class=

date
status

association ‘\,

generalization __ %

calcTax
calcTotal
calcTotalveight

Credit

number

type
expDate

autharized

-+ Payment | 4 = ﬁ q
amaount
role name
Cash Check
cashTendered name
hanklD

authorized

1

ling iterm [1.* f——

OrderDetail

quantity
taxStatus

multiplicity

0=

ftem -

shippingiWeight
description

calcSubTotal
calcWiginht

N

getPriceForQuantity
geteight «

navigability

class name

attributes

operations

UML class notation is a rectangle divided into thparts: class name, attributes, and operations.
Names of abstract classes, sucliPagment are in italics. Relationships between classeshae t
connecting links.

104

Our class diagram has three kinds of relationships:

Association -- a relationship between instances of the twoselss There is an association
between two classes if an instance of one class kmasv about the other in order to perform its
work. In a diagram, an association is a link cotingdwo classes.

Aggregation -- an association in which one class belongs tolleation. An aggregation has a
diamond end pointing to the part containing the Mvhim our diagramQrder has a collection of
OrderDetails.

Generalization -- an inheritance link indicating one class is g@euclass of the other. A
generalization has a triangle pointing to the sugass.Paymentis a super class dfash
Check, andCredit.

An association has two ends. An end may hawela name to clarify the nature of the
association. For example, @rderDetalil is a line item of eacrder.

A navigability arrow on an association shows which direction gsmeiation can be traversed or
gueried. AnOrderDetail can be queried about item, but not the other way around. The arrow
also lets you know who "owns" the association'slem@ntation; in this cas@rderDetail has
anltem. Associations with no navigability arrows are Iriedtional.

Themultiplicity of an association end is the number of possiblames of the class associated
with a single instance of the other end. Multigies are single numbers or ranges of numbers. In
our example, there can be only o@astomer for eachOrder, but aCustomer can have any
number ofOrders.

This table gives the most common multiplicities.

Multiplicities | Meaning

0..1 zero or one instance. The notation. mindicatesn to m instances.
0.*or* No limit on the number of instances (including apn

1 exactly one instance

1.* at least one instance

Every class diagram has classes, associationsnattglicities. Navigability and roles are
optional items placed in a diagram to provide tyari

6.3 Package and Object Diagrams
To simplify complex class diagrams, you can grolgsses intopackages A package is a

collection of logically related UML elements. Thegram below is a business model in which
the classes are grouped into packages.

105

Accounting = ————— 4 ——— Bank
M
:.q dependency
Ul |—— —| Ordering |— — — —> Shipping \

Bk 14
Al Y

CustomerDB StockDE

Packages appear as rectangles with small tabsdbgh The package name is on the tab or
inside the rectangle. The dotted arrows @ependenciesOne package depends on another if
changes in the other could possibly force changéss first.

Object diagrams show instances instead of classes. They are usefakplaining small pieces
with complicated relationships, especially recuesiglationships.

This small class diagram shows that a univer&gpartment can contain lots of other
Departments

Department

n.x
subdepartment

-degree:String[]={"graduate" "undergraduate" "both"}

)

The object diagram below instantiates the clasgrdra, replacing it by a concrete example.

106

instance name _"‘a\‘ f class name

mathStat:-Department

math:Department

statistics:Department

appliedMath:Department mathEd:Department

Each rectangle in the object diagram corresponda ®ngle instance. Instance names are
underlined in UML diagrams. Class or instance namag be omitted from object diagrams as
long as the diagram meaning is still clear.

6.4 Sequence Diagrams

Class and object diagrams are static model viémisraction diagrams are dynamic. They
describe how objects collaborate.

A sequence diagranms an interaction diagram that details how operatiare carried out -- what
messages are sent and when. Sequence diagramsgargzed according to time. The time
progresses as you go down the page. The objecib/et/in the operation are listed from left to
right according to when they take part in the mgsssequence.

Below is a sequence diagram for making a hotelrveasen. The object initiating the sequence
of messages & Reservation window

107

] aChain aHotel
object * HotelChain Hatel

window
serinterface

[
I
|
|
makeResemation:void | makeReseration(:vaid

e
N o =
message

Witemﬁﬂn
for each day] isRoom:=availahled:hoalean

condition
[isRoom]
—h

aResenvation
Reservation

aNotice
Confirmation

EE— e
y creation Z -—
activation bar — >

HUEE"_\ u

If & roam is availahle far

I
¢ deleti | each day ofthe stay, make [
* eletion :"'“-—-_____ lifeline _p.: a reservation and send a |

| confirmation. :

The Reservation window sends a makeReservation() message tdaelChain. The
HotelChain then sends a makeReservation() message Hotel. If the Hotel has available
rooms, then it makesReservationand aConfirmation .

Each vertical dotted line isldeline, representing the time that an object exists. Eaohw is a
message call. An arrow goes from the sender tooih@f theactivation bar of the message on
the receiver's lifeline. The activation bar repregsehe duration of execution of the message.

In our diagram, thedotel issues aself call to determine if a room is available. If so, thee th
Hotel creates &eservationand aConfirmation. The asterisk on the self call meatesation

(to make sure there is available room for each afatyhe stay in the hotel). The expression in
square brackets, [], isamndition. The diagram has a clarifyingpte, which is text inside a dog-
eared rectangle. Notes can be put into any kind\E diagram.

6.5 Collaboration Diagrams
Collaboration diagrams are also interaction diagrams. They convey the safioemation as

sequence diagrams, but they focus on object roktsad of the times that messages are sent. In
a sequence diagram, object roles are the vertimksn@ssages are the connecting links.

108

window:Userinterface

message

‘{11 1 makeReserationd:y aid

aChain:HotelChain

4 object

%’1 1.1 makeResenvation(void

/~ sequence number

aHotel:Hotel 191 _EZ[iSRDDm] [aReservation:Reservation 11121 [aNotice:Confirmation

iteration - self link

1.1.1.1*[for each day] isRoom:=availabled:boolean =

The object-role rectangles are labeled with eitt@ss or object names (or both). Class names
are preceded by colons (:).

Each message in a collaboration diagram rsegaence numberThe top-level message is
numbered 1. Messages at the same level (sent diergame call) have the same decimal prefix
but suffixes of 1, 2, etc. according to when theguo.

6.6 State Chart Diagrams

Objects have behaviors and state. The state obj@stalepends on its current activity or
condition. Astate chart diagramshows the possible states of the object and thsitians that
cause a change in state. Our example diagram mitaelsgin part of an online banking system.
Logging in consists of entering a valid social sgginumber and personal id number, then
submitting the information for validation. Loggingcan be factored into four non-overlapping
statesGetting SSN Getting PIN, Validating, andRejecting. From each state comes a
complete set dransitions that determine the subsequent state.

109

initial state

ICursorto 58N

'D Rejecting

Getting S50
CanceliQuit W

RetyfClear SEN, FIN entries event guard activity

Fress key[kevt tab]IDispéy ke

[notwalidifDisplay error message

final state
5 Yalidating |
alicStar transaction | /validate SShand FIN subrmit
action

AN

Press tab OR move cursorto PIM
fieldiCursarta FIM

T Press shift-tab OR move cursor to
S5 fieldfCursorto 35N

transition

Getting PIN stace

Press keylkey = shift-tah)/Displaydot

States are rounded rectangles. Transitions arevsuifrom one state to another. Events or
conditions that trigger transitions are writtenideghe arrows. Our diagram has two self-
transition, one oetting SSNand another ofsetting PIN.

The initial state (black circle) is a dummy to sthe action. Final states are also dummy states
that terminate the action.

The action that occurs as a result of an evenbodition is expressed in the form /action. While
in its Validating state, the object does not wait for an outside etetrigger a transition.
Instead, it performs an activity. The result oftthetivity determines its subsequent state.

6.7 Activity Diagrams

An activity diagram is essentially a fancy flowchart. Activity diagrarusd statechart diagrams
are related. While a statechart diagram focusestath on an object undergoing a process (or on
a process as an object), an activity diagram facosehe flow of activities involved in a single
process. The activity diagram shows the how thoseites depend on one another.

For our example, we used the following process.

"Withdraw money from a bank account through an ATM.

The three involved classes (people, etc.) of thevigcare Customer, ATM, andBank. The

process begins at the black start circle at theatogh ends at the concentric white/black stop
circles at the bottom. The activities are roundssiangles.

110

swimlane
— T— - .
v ' N
Customer ATM Machine “Bank

+—— start
Insert card

ﬂctmry
[Entar pin % pm)

Authorize
branch
[walid PIM]

[Enteramount

If-gt.rﬁrcl' expression

[Irwalld PIr)

Check account halance)

[balance == amnunt%[ha

N fork

lance = amount]

Join

-
(Take money from siot

{ Debitaccount

Show balance

merge "y

Eject card

e end

Activity diagrams can be divided into objexstim-lanesthat determine which object is
responsible for which activity. A singteansition comes out of each activity, connecting it to

the next activity.

A transition maybranch into two or more mutually exclusive transitio&uard expressions
(inside []) label the transitions coming out diranch. A branch and its subsequeetrge
marking the end of the branch appear in the diagrsumollow diamonds.

A transition mayork into two or more parallel activities. The fork ati@ subsequeinbin of
the threads coming out of the fork appear in tlagdim as solid bars.

111

6.8 Component and Deployment Diagrams

A componentis a code module. Component diagrams are physiedbgs of class diagram.
Deployment diagramsshow the physical configurations of software andlvare.

The following deployment diagram shows the relaglips among software and hardware
components involved in real estate transactions.

Bank Server Real Estate Server
=<Database== g Mortgage Application Listing <<Storage=>
CustomerDB | — —»| MultipleListings

i ' b
_______ 7 component
IMortgageApplication
A

interface IListing
.,—'?'
f S
I node e
-~
: L — dependency
-~
} = connection
| aPC - 4.'/
| _—
TR Buyerlnterface TCRIP

The physical hardware is made umoftles Each component belongs on a node. Components
are shown as rectangles with two tabs at the upfier

112

113

CHAPTER 7:

Software Testing

7.1 Definition and Life Cycle

Definition

Software testing is a process of executing a prognath the intent of finding error. Testing
should intentionally attempt to make things go vg@a determine if things happen when they
shouldn't or things don't happen when they shdtld.oriented towards “detection”.

Software testing should not be confused with sakwaquality assurance. Software quality
assurance is a process of setting up quality stdagad benchmarks to ensure the achievement
of expected quality where as software testingpsogess of comparing the quality achieved with
quality expected. It is focused on minimizing tlgap and ensures the delivering of a high
quality product. The difference can be more easiigerstood by the example of a chef who
follows a recipe to cook a particular dish. Recguggests the various contents, ratio of the
contents, level of heat, process of cooking etenéixe sure that the intended dish must taste at
its best so a recipe is nothing but tpeality assuranceguide for the dish. Once the dish is
cooked, chef tastes it himself before serving ithe guests to make sure it tastes the same as
expected. So chef is actuatBstingthe dish.

Why is testing done
Software testing is done for the below mentioneoas:

* Need to ensure system works before it is turned vehe business.
» Error Free Superior Product.

* Quality Assurance to the Client.

» Competitive advantage.

e Cut down Costs.

Software Testing Life Cycle

Once software is developed, the sequence of aeswthich take place in QA department is as
below:

» Understand business Requirements
» Understand the Application

* Prepare the Test Plan

* Prepare Test Condition

» Review Test Plan and Test Condition
* Prepare Test Case

114

* Review Test Case

* Prepare Test Data

* Prepare Test Script

* Execute Test Case

* Report the Defect

* Retest the Defect

* Attend Project Meeting calls, defect calls and Rexent calls
* Prepare the Traceability Matrix

* Send Daily report or weekly report to Manager

One end to end software testing process, depewdinige size of the application, can be small or
a lengthy one. A typical end-to-end software tesfnocess can be explained with the help of
the following diagram:

Information CGathering (BRS)

Analvzas | SwRS)

Desizn (HLDD & LLDD) PM - QA*—Tet Initiation
" L
Coding Test Lead *— Teut Flanning
L4 v
Unir Testing Stady SwHS & Destgn Dot
; : ¥ .
Imt: Testin Test Dres
mtegration Testing PR et Dresigm

Level — 0 { Sanity / Smoke | TAT)

Text Avrcanasion

Test Batches Creation

Alodified R
Baild) Next
Select 2 baich and smari=
Bug i execution [Level -1)
Resolving {(Regre:ziom)
(Level —2) J
Drefact Independsnr
Drefect If u got any mizmatch then ol
Fixing suzpend thar Batch
Rl'Pd-li l
Otherwize
Text Clocure

Fimal Regreision ' Pre Acceptance ' Rsleaze
Pozt AMortmm LeIel. -3 Teztme

User Accepinoece Tent

Sigm Off

The sequence of phases involved in software tetengycle is depicted in the diagram below:

115

Eesjiifrment Slige
S T P
> Tesl Arahynis
==% Tesi Dengm
|
: [y
Regtistaion Testing Tesl Verification: k Consfrution
1 = Test E .

= Bell Amalysis
T E——

Repoeting & Rewerk

== Fira Trting & Inplemeatziicn

=" Fod Implemertation

1. Requirement Stage

This is the initial stage of the life cycle procassvhich the developers take part in analyzing the
requirements for designing a product. Testers tsmiavolve themselves as they can think from

the users' point of view which the developers maly mhus a panel of developers, testers and
users can be formed. Formal meetings of the paaelbe held in order to document the

requirements discussed which can be further usesbfiware requirements specifications or

SRS.

116

2. Test Planning

Test planning is predetermining a plan well in aweto reduce further risks. Without a good
plan, no work can lead to success be it softwdete® or routine work. A test plan document
plays an important role in achieving a processrbei@ approach. Once the requirements of the
project are confirmed, a test plan is documentée. t€st plan structure is as follows:

* Introduction: This describes the objective of the test plan.

» Test Items: The items that are referred to prepare this doctinvéhbe listed here such
as SRS, project plan.

» Features to be testedThis describes the coverage area of the test @arnhe list of
features that are to be tested that are basedeamthlicit and explicit requirements from
the customer.

* Features not to be testedThe incorporated or comprised features that caskipped
from the testing phase are listed here. Featuras @re out of scope of testing, like
incomplete modules or those on low severity eg. @dltures that don't hamper the
further process can be included in the list.

» Approach: This is the test strategy that should be appraptiathe level of the plan. It
should be in acceptance with the higher and loexl§ of the plan.

* Item pass/fail criteria: Related to the show stopper issue. The criterioichvis used
has to explain which test item has passed or failed

» Suspension criteria and resumption requirementsThe suspension criterion specifies
the criterion that is to be used to suspend adl portion of the testing activities, whereas
resumption criterion specifies when testing canmes with the suspended portion.

» Test deliverable: This includes a list of documents, reports, chidwés are required to be
presented to the stakeholders on a regular basiagdtesting and when testing is
completed.

» Testing tasks: This stage is needed to avoid confusion whetherdéfects should be
reported for future function. This also helps usarsl testers to avoid incomplete
functions and prevent waste of resources.

» Environmental needs: The special requirements of that test plan depgndim the
environment in which that application has to begle=d are listed here.

* Responsibilities: This phase assigns responsibilities to the persbo van be held
responsible in case of a risk.

» Staffing and training needs: Training on the application/system and training tha
testing tools to be used needs to be given totdieraembers who are responsible for the
application.

» Risks and contingenciesThis emphasizes on the probable risks and varivests that
can occur and what can be done in such situation.

» Approval: This decides who can approve the process as camgtet allow the project
to proceed to the next level that depends on thed td the plan.

117

3. Test Analysis

Once the test plan documentation is done, the siexfe is to analyze what types of software
testing should be carried out at the various staf&DLC.

4. Test Design

Test design is done based on the requirementeqgirthject documented in the SRS. This phase
decides whether manual or automated testing i ome. In automation testing, different paths
for testing are to be identified first and writird scripts has to be done if required. There
originates a need for an end to end checklistdbegrs all the features of the project.

5. Test Verification and Construction

In this phase test plans, the test design and atémhscript tests are completed. Stress and
performance testing plans are also completed sitsthige. When the development team is done
with a unit of code, the testing team is require@dhelp them in testing that unit and reporting of
the bug if found. Integration testing and bug réipgris done in this phase of the software
testing life cycle.

6. Test Execution

Planning and execution of various test cases i donthis phase. Once the unit testing is
completed, the functionality of the tests is damé¢his phase. At first, top level testing is doae t
find out top level failures and bugs are reportedhediately to the development team to get the
required workaround. Test reports have to be doatedeproperly and the bugs have to be
reported to the development team.

7. Result Analysis

Once the bug is fixed by the development teangfter the successful execution of the test case,
the testing team has to retest it to compare tpeard values with the actual values, and declare
the result as pass/falil.

8. Bug Tracking

This is one of the important stages as the Defedfil® Document (DPD) has to be updated for
letting the developers know about the defect. DiefPecfile Document contains the following

» Defect Id: Unique identification of the Defect.

» Test Case Id Test case identification for that defect.

» Description: Detailed description of the bug.

e Summary: This field contains some keyword information abthg bug, which can help
in minimizing the number of records to be searched.

» Defect Submitted By:Name of the tester who detected/reported the bug.

» Date of SubmissionDate at which the bug was detected and reported.

118

* Build No.: Number of test runs required.

» Version No.: The version information of the software applicationwhich the bug was
detected and fixed.

» Assigned To:Name of the developer who is supposed to fix thge bu

» Severity: Degree of severity of the defect.

* Priority: Priority of fixing the bug.

» Status: This field displays current status of the bug.

Reporting and Rework

Testing is an iterative process. The bug once teg@and as the development team fixes the bug,
it has to undergo the testing process again toragbat the bug found is resolved. Regression
testing has to be done. Once the Quality Analystir@s that the product is ready, the software is
released for production. Before release, the soéwas to undergo one more round of top level
testing. Thus testing is an ongoing process.

Final Testing and Implementation

This phase focuses on the remaining levels of nigstsuch as acceptance, load, stress,
performance and recovery testing. The applicati@eds to be verified under specified
conditions with respect to the SRS. Various docusane updated and different matrices for
testing are completed at this stage of the softiwestng life cycle.

Post Implementation

Once the tests are evaluated, the recording ofsthat occurred during various levels of the
software testing life cycle is done. Creating pldos improvement and enhancement is an
ongoing process. This helps to prevent similar lgmls from occurring in the future projects. In
short, planning for improvement of the testing msx for future applications is done in this
phase.

7.1.1 Software Defect Cycle

During the software testing, software testers tryfihd the bugs or defects in the software.
Defect can be defined as “Deviation of the requerth No software is worthwhile as long as it
has defects. All the defects found during the mgstire logged in a defect log and are assigned
severity level (High, Medium or Low) and defecttata(New, Open, Fixed, Closed, Reopen etc.)
and reported to the test lead and development team.

A typical defect life cycle can be depicted asftiilowing diagram:

119

Detect Defect

o
Reproduce Defect —~

),
Report Defect -

Y

Fix B -
ix Bug ~
<
Resolve Bug —
2 \.
&
Close Bug

Bug status description:

These are various stages of bug life cycle. Theisteaption may vary depending on the bug
tracking system you are using.

1) New:When QA logs a new bug.

2) Deferred: If the bug is not related to current build or car be fixed in this release or bug is
not important to fix immediately then the projechmager can set the bug status as deferred.

3) Assigned:‘Assigned to’ field is set by project lead or maaagnd assigns bug to developer.

4) Resolved/Fixed:When developer makes necessary code changes aifidsvdre changes
then he/she can make bug status as ‘Fixed’ anduyés passed to testing team.

5) Could not reproduce:If developer is not able to reproduce the bug leydteps given in bug
report by QA then developer can mark the bug asRCIDA needs action to check if bug is
reproduced and can assign to developer with ddtegigroducing steps.

6) Need more information: If developer is not clear about the bug reproduepssprovided by
QA to reproduce the bug, then he/she can mark‘iNasd more information’. In this case QA
needs to add detailed reproducing steps and alssgback to dev for fix.

7) Reopen:lf QA is not satisfy with the fix and if bug is Btieproducible even after fix then QA
can mark it as ‘Reopen’ so that developer can éggopriate action.

8) Closed:If bug is verified by the QA team and if the fixak and problem is solved then QA
can mark bug as ‘Closed’.

9) Rejected/Invalid: Some times developer or team lead can mark thea®wRgjected or invalid
if the system is working according to specificaiorand bug is just due to some
misinterpretation.

120

Defect Status Cycle can be explained by the folgwdiagram:

Defect Life Cycle

Tester realizes it's
am invalid defect
Mew - Cancelled “
Tester
A A A camuel The
h J Tenter provides Toreinfo onreected defect o Rejected
- Assig;m i " Pprove it's a vahid defent defect
Rejecied !
Not reproducible
Valid? Ho
Yes Duplicaie
Ve
¥
Ho
Fixx Required ? Fixed
L Mo Yes ‘L

Re-Open Closed

121

7.1.2 Types of Software Testing

Software testing can be performed either manualith other automated software or with a
combination of both. The types of software tesaing their explanations are as below:

User Acceptance

Testing Testing the system with the intent of confirming readiness of the product and

customer acceptance.

Testing without a formal test plan or outside of a test plan. With some projects
this type of testing is carried out as an adjunct to formal testing. If carried out by

Ad Hoc Testing a skilled tester, it can often find problems that are not caught in regular testing.
Sometimes, if testing occurs very late in the development cycle, this will be the
only kind of testing that can be performed. Sometimes ad hoc testing is referred
to as exploratory testing.

Testing after code is mostly complete or contains most of the functionality and

Alpha Testing prior to users being involved. Sometimes a select group of users are involved.
More often this testing will be performed in-house or by an outside testing firm in
close cooperation with the software engineering department.

Software testing that utilizes a variety of tools to automate the testing process
i and when the importance of having a person manually testing is diminished.
Automated Testing Automated testing still requires a skilled quality assurance professional with
knowledge of the automation tool and the software being tested to set up the
tests.

Testing after the product code is complete. Betas are often widely distributed or
even distributed to the public at large in hopes that they will buy the final
product when it is released.

Beta Testing

Black Box Testing Testing software without any knowledge of the inner workings, structure or
language of the module being tested. Black box tests, as most other kinds of
tests, must be written from a definitive source document, such as a specification

12

N

or requirements document.

Compatibility Testing used to determine whether other system software components such as
Testing browsers, utilities, and competing software will conflict with the software being
tested.

Configuration Testing to determine how well the product works with a broad range of
Testing hardware/peripheral equipment configurations as well as on different operating
systems and software.

Testing two or more modules together with the intent of finding defects,

Functional Testing demonstrating that defects are not present, verifying that the module performs
its intended functions as stated in the specification and establishing confidence
that a program does what it is supposed to do.

The process of exercising software with the intent of ensuring that the software
Independent system meets its requirements and user expectations and doesn't fail in an
Verification and unacceptable manner. The individual or group doing this work is not part of the
Validation (IV&V) group or organization that developed the software. A term often applied to
government work or where the government regulates the products, as in medical
devices.

Installation Testing Testing with the intent of determining if the product will install on a variety of
platforms and how easily it installs.

Testing two or more modules or functions together with the intent of finding
interface defects between the modules or functions. Testing completed at as a

Integration Testing part of unit or functional testing, and sometimes, becomes its own standalone
test phase. On a larger level, integration testing can involve a putting together of
groups of modules and functions with the goal of completing and verifying that
the system meets the system requirements. (see system testing)

12

w

Testing with the intent of determining how well the product handles competition
for system resources. The competition may come in the form of network traffic,
CPU utilization or memory allocation.

Load Testing

Performance Testing with the intent of determining how quickly a product handles a variety of
Testing events. Automated test tools geared specifically to test and fine-tune
performance are used most often for this type of testing.

Testing that involves the users just before actual release to ensure that users
become familiar with the release contents and ultimately accept it. Often is
considered a Move-to-Production activity for ERP releases or a beta test for
commercial products. Typically involves many users, is conducted over a short
period of time and is tightly controlled. (see beta testing)

Pilot Testing

Testing with the intent of determining if bug fixes have been successful and have
not created any new problems. Also, this type of testing is done to ensure that
no degradation of baseline functionality has occurred.

Regression Testing

Testing of database and network software in order to keep company data and
resources secure from mistaken/accidental users, hackers, and other malevolent
attackers.

Security Testing

The process of exercising software with the intent of ensuring that the software
system meets its requirements and user expectations and doesn't fail in an

Software Testing unacceptable manner. The organization and management of individuals or
groups doing this work is not relevant. This term is often applied to commercial
products such as internet applications. (contrast with independent verification
and validation)

Stress Testing Testing with the intent of determining how well a product performs when a load
is placed on the system resources that nears and then exceeds capacity.

124

Testing a specific hardware/software installation. This is typically performed on a
COTS (commerical off the shelf) system or any other system comprised of
disparent parts where custom configurations and/or unique installations are the
norm.

User Acceptance
Testing See Acceptance Testing.

White Box Testing Testing in which the software tester has knowledge of the inner workings,
structure and language of the software, or at least its purpose.

System Integration
Testing

7.2 Creating Software Test Plan

A software test plan focuses at planning the saoftwesting process and encompasses defining
the in-scope, out of scope, objective, test styatagst phases, test schedule, resources required,
roles and responsibilities of the team membersluah) error measurement system, reporting
requirements, communication channel, sign off pecetc. It aims at complying with the
“conformance to the requirements” with a goal dhbBshing a list of tasks, if performed, will
identify all the requirements that have not beet me

The test plan represents the overall approachede$t. In many ways, the test plan serves as a
summary of the test activities that will be perfexn It shows how the tests will be organized,
and outlines all of the testers’ needs that mushbgein order to properly carry out the test.

A test plan usually contains the following informeat

1. Introduction
Covers the Introduction of the project, backgrountbrmation and objective of the test
initiative.

2. Scope
Covers the scope of the test in terms of areae wlered such as

3. Developing Software Test Strategy
3.1. System Test
3.2. Performance Test
3.3. Security Test
3.4. Automated Test
3.5. Stress and Volume Test
3.6. Recovery Test

3.7. Documentation Test
3.8. Beta Test
3.9. User Acceptance Test

4. Environment Requirements
4.1. Data Entry workstations
4.2 Main Frame

. Test Schedule
. Control Procedures
6.1 Reviews

o 01

6.2 Bug Review meetings

6.3 Change Request
6.4 Defect Reporting

7. Functions To Be Tested

8. Resources and Responsibilities

8.1. Resources
8.2. Responsibilities
9. Deliverables
10. Suspension / Exit Criteria
11. Resumption Criteria
12. Dependencies
12.1 Personnel Dependencies
12.2 Software Dependencies
12.3 Hardware Dependencies
12.3 Test Data & Database
13. Risks
13.1. Schedule
13.2. Technical
13.3. Management
13.4. Personnel
13.5 Requirements
14. Tools
15. Documentation
16. Approvals

125

126

7.3 Software Test Scenario, Test Cases & Test Conditien
Test Scenario:

A test scenario is a set of test cases that enthaeshe business process flows are tested from
end to end. They may be independent tests or assefitests that follow each other each
dependent on the output of the previous one. Adeshario can also be referred as the flow of
data from one end to another end in a processiggests the possible scenario for which an
application can be tested. Usually test caseseareead! from test scenarios and test scenarios are
derived from use cases.

Test Case:

A test case is — “A set of conditions or variablesler which it describes an application’s input,
action or event and an expected response for er tiestietermine whether a software application
is working as expected.”

Test Case is a commonly used term for a spec#ic Tis is usually the smallest unit of testing
and while performing the manual testing sometintess ialso referred agest script but in
automation testing test script is a program writtetest the functionality of an application. It is
a set of system readable instructions to autontedetdsting. It is a set of inputs, execution,
preconditions and expected outcomes developed fparaicular objective such as to verify
compliance with a specific requirement. Writingtteases is necessary for standardization and
minimizes the ad-hoc approach in testing.

A test case is usually a single step, or occadipaaequence of steps, to test the correct
behavior/ functionality, features of an applicatiém expected result or expected outcome is
usually given. Additional information that may beluded:

- testcase ID

- test case description

+ test step or order of execution number
- related requirement(s)

« depth

- test category

- author

« check boxes for whether the test can be or has &igtemated
« pass/fail

« remarks

A test case can be both positive and a negatitectese. In order to fully test that all the
requirements of an application are met, there rnestt least two test cases for each requirement:
one positive test and one negative test. If a requent has sub-requirements, each sub-
requirement must have at least two test cases.ikgé@ck of the link between the requirement
and the test is frequently done using a traceghihiaitrix. Written test cases should include a
description of the functionality to be tested, ahd preparation required to ensure that the test
can be conducted.

Example of Positive Test Case:

Test Case No:

Test Case Name:

Project

Name:

Module Name:

Date:

Author:

Pre-Conditions:

TC 1.1

127

Verify that user can Login myCRM with correctnmame and Password

myCRM
Login
XX-XX-XXXX
John Schultz

User must have Valid URL, Username and Password

SNo. | Description Expected result Pass/fail comments
1 Enter URL,; myCRM Login Page is PASS
WWW.MYyCrm.com displayed
2 Enter Username: John John is displayed in usenaPASS
text box
3 Enter Password: Schultz0OQ1l Password is displeiyed PASS
password textbox in encrypted
format
4 Click on Login Button Systems displays the Home| PASS
Page

Example of Positive Test Case:

Test Case No:

Test Case Name:
Password

Project

Name:

Module Name:

Date:

Author:

Pre-Conditions:

TC 1.1

Verify that user CAN NOT Login myCRM with ingalsername and

myCRM
Login
XX-XX-XXXX
John Schultz

None

128

SNo. | Description Expected result Pass/fail comments
1 Enter URL; myCRM Login Page is PASS
WWW.Mmycrm.com displayed
2 Enter Username: John John is displayed in usegnaPASS
text box
3 Enter Password: Password is displayed in PASS
Any invalid password password textbox in encrypted
format
4 Click on Login Button Systems displays the error | PASS
message: “Oops! Wrong
Password! Please try again”

A negative test case can have multiple possiblebonmations and that is where we should
prioritize which combinations are High/Medium or viopriority combinations as not all
combinations are necessary to test:

* Wrong Login/ Right Password
* Right Login/ Wrong Password
* Wrong Login/ Wrong Password
* No Login/ Right Password

* No Login/ Wrong Password

* Right Login/ No Password

* No Login/ No Password

Test Condition:

Test condition is the process that we follow td #as application. System is supposed to fulfill

one condition in order to move to the next step K.g user intends to check his current health
insurance invoice for the total pending amount ¢oplaid, user has to login in the system and
essential condition will be system will let the usecess his account only when it will validate

the user name and password. Test scenario ancbtasition are used highly interchangeably.

There are different ways of writing test cases wvayy}company to company but here are some
variations of test case formats:

Functional Test case for XO00000KX

Description

Test
2 |Name

Link

Assigned Target Actual Pass/ Why Fail 2 Defect Comments Fixed Defect Testers'
to Date Date Fail yral: Status By Severity Comments
Pass Open Critical

Fail | Fixed |

Not .
Tested Closed Minor

TestiD Module Description Procedure Expected Result

129

A |Blc|D|lE[F]l G [H]I]J]K] L | M | N lo[Pla
Project Name:
Written By:
Written Date:
Executed By:
Executed Date:
Last Update:
User:

Test Case Description:

Environment:

Pre-conditions:
Input Files:

Total Test Cases
Pass

Fail

Auto

a|lalalalal=
‘m‘h|m|m__gmm~qmm.p.mm_.

o |a|a|a

Testing Priority (High,
Medium, Low)

Test Case Name

Pass
Fail
lAuto

Test Condition Expected Resulis| Comments

And finally the test results are analyzed by tls¢ team lead. Test results looks something like
this:

A B C D E F G H | J K L [N o
1 Test Result Summary
Total
Testcases
100 28 22 50 15 15 g 7 5

Pass Fail |MNot Tested [Closed| Fixed |Open-Critical |Open-Major | Open-Minor

RN

o

Test 5 y

|w oc|--| [}

=

Test Result Summary Defect Summary
Not Tested Open-Minor

50% —\ 25%

7

x}

-

o

E

=i

@

@

Open-Critical
40%

(=]
=]

ERIE S

[
th

AEEEEE

Open-Major
35%

130

131

Annexure:

SAMPLE PROJECT DOCUMENTS

AND

TEMPLATES

132

Project Scope Document

133

Project Name

Document Version

Prepared by

Date created

Approved by

Date approved

Revision History

CXXXiV

Name

Date

Reason For Changes

Version

135

1. Business Requirements

<The business requirements provide the foundatrwhraference for all detailed requirements
development. You may gather business requiremems fthe customer or development
organization’s senior management, an executive sspona project visionary, product

management, the marketing department, or othevigheils who have a clear sense of why the
project is being undertaken and the ultimate vatweill provide, both to the business and to
customers.>

1.1. Background

<This section summarizes the rationale for the pevduct. Provide a general description of the
history or situation that leads to the recognitioat this product should be built.>

1.2. Business Opportunity

<Describe the market opportunity that exists or business problem that is being solved.
Describe the market in which a commercial produitt ke competing or the environment in

which an information system will be used. This niaglude a brief comparative evaluation of
existing products and potential solutions, indimgtwhy the proposed product is attractive.
Identify the problems that cannot currently be sdlwithout the product, and how the product
fits in with market trends or corporate strategrections.>

1.3. Business Objectives and Success Criteria

<Describe the important business objectives of gfaduct in a way that is quantitative and
measurable. The value provided to customers isridescin section 1.4, so this section should
focus on the value provided to the business. Thiddcinclude estimates of revenue or cost
savings, return on investment analysis, or targktase dates. Determine how success will be
defined and measured on this project, and destirdéactors that are likely to have the greatest
impact on achieving that success. Include thindgkiwithe direct control of the organization, as
well as external factors. Establish measurablenaitto assess whether the business objectives
have been met.>

1.4. Customer or Market Needs

<Describe the needs of typical customers or maskgtments, including needs that are not yet
met by the marketplace or by existing systems. Nay wish to describe problems customers
currently encounter that the new product will (ol wot) address and how the product would be
used by customers. Identify the customer hardwack software environment in which the
product must operate. Define at a high level angwkn critical interface or performance
requirements. Avoid including any design or impletag¢ion details. Present the requirements in
a numbered list so that more detailed user or fonat requirements can be traced to them.>

1.5. Business Risks

<Summarize the major business risks associated wdébheloping this product, such as
marketplace competition, timing issues, user aece@®, implementation issues, or possible
negative impacts on the business. Estimate theriseva the risks and identify any risk
mitigation actions that could be taken.>

136

2. Vision of the Solution

<This section establishes a long-term vision fa $iystem to be built to address the business
objectives. This vision will provide the context fmaking decisions throughout the course of the
product development life cycle. The vision shoutd mclude detailed functional requirements
or project planning information.>

2.1. Vision Statement

<Wsrite a concise vision statement that summarizegtrpose and intent of the new product and
describes what the world will be like when it ing&s the product. The vision statement should
reflect a balanced view that will satisfy the needfisliverse customers as well as those of the
developing organization. It may be somewhat idgajibut it should be grounded in the realities
of existing or anticipated customer markets, emigeeparchitectures, organizational strategic
directions, and cost and resource limitations.>

2.2. Major Features

<Include a numbered list of the major featureshef hew product, emphasizing those features
that distinguish it from previous or competing puots. Specific user requirements and
functional requirements may be traced back to tfems®res.>

2.3. Assumptions and Dependencies

<Record any assumptions that were made when cangeilre project and writing this vision
and scope document. Note any major dependencigwafect must rely upon for success, such
as specific technologies, third-party vendors, tgvaent partners, or other business
relationships.>

3. Scope and Limitations

<The project scope defines the concept and rangfeegiroposed solution. It's also important to
define what will not be included in the productafiflying the scope and limitations helps to
establish realistic expectations of the many stakirs. It also provides a reference frame
against which proposed features and requirementges can be evaluated. Proposed
requirements that are out of scope for the envesiqgeroduct must be rejected, unless they are so
beneficial that the scope should be enlarged toranmwdate them (with accompanying changes
in budget, schedule, and/or resources).>

3.1. Scope of Initial Release

<Describe the intended major features that wiliruded in the initial release of the product.
Consider the benefits the product is intended togoto the various customer communities, and
generally describe the product features and queligracteristics that will enable it to provide
those benefits. Avoid the temptation to includergymssible feature that any potential customer
category might conceivably want some day. Focuthore features and product characteristics
that will provide the most value, at the most atakle development cost, to the broadest
community.>

137

3.2. Scope of Subsequent Releases

<If a staged evolution of the product is envisioledr time, indicate which major features will
be deferred to later releases.>

3.3. Limitations and Exclusions

<ldentify any product features or characteristitat ta stakeholder might anticipate, but which
are not planned to be included in the new product.>

4. Business Context

<This section summarizes some of the businesssssaeind the project, including profiles of
major customer categories, assumptions that weathe project concept, and the management
priorities for the project.>

4.1. Stakeholder Profiles

<Stakeholders are individuals, groups, or orgartnatthat are actively involved in a project, are
affected by its outcome, or can influence its omteo The stakeholder profiles identify the
customers for this product and other stakeholderd,states their major interests in the product.
Characterize business-level customers, target madgments, and different user classes, to
reduce the likelihood of unexpected requirementfasing later that cannot be accommodated
because of schedule or scope constraints. Forsakaholder category, the profile includes the
major value or benefits they will receive from theoduct, their likely attitudes toward the
product, major features and characteristics ofr@stie and any known constraints that must be
accommodated. Examples of stakeholder value include

improved productivity

reduced rework

cost savings

streamlined business processes

automation of previously manual tasks

ability to perform entirely new tasks or functions

conformance to current standards or regulations

improved usability or reduced frustration level gaared to current applications

138

Example
Major
Stakeholder | Value Attitudes Major Interests Constraints
executives increased | see product as richer feature set thapmaximum
revenue avenue to 25% competitors; time to | budget =
increase in market| market $1.4M
share
editors fewer errorg highly receptive, | automatic error must run on
in work but expect high correction; ease of | low-end
usability use; high reliability | workstations
legal aides quick accessesistant unless | ability to handle no budget for
to data product is much larger databasegretraining
keystroke- than current system,;
compatible with | easy to learn
current system

4.2. Project Priorities

<Describe the priorities among the project’s reguments, schedule, and budget. The table below
may be helpful in identifying the parameters arouhd project’s key drivers (top priority
objectives), constraints to work within, and dimens that can be balanced against each other to
achieve the drivers within the known constraints.>

Dimension Driver Constraint Degree of Freedon
(state objective) (state limits) (state allowable range)
Schedule release 1.0 to pe
available by 10/1
release 1.1 by 12/1
Features 70-80% of high priorify
features must be includgd
in release 1.0
Quality 90-95% of user acceptarice
tests must pass for reIe%lse
1.0, 95-98% for release 1.
Staff maximum team size
is 6 developers + 4
testers
Cost budget overrun up to 15%
acceptable witho
executive review

139

4.3. Operating Environment

<Describe the environment in which the system b@lused and define the major availability,

reliability, performance, and integrity requirem&nthis information will significantly influence

the definition of the system’s architecture. Coesiguestions such as:

* Are the users widely distributed geographicallylawated close to each other? How many
time zones are they in?

* When do the users in various locations need tosadte system?

* Where is the data generated and used? How far agathese locations? Does the data from
multiple locations need to be combined?

* Are specific maximum response times known for asiogs data that might be stored
remotely?

» Can the users tolerate service interruptions @orginuous access to the system critical for
the operation of their business?

* What access security controls and data protectiqnirements are needed?>

140

141

Project Charter

1. Document Purpose

2. Problem Statement

3. Project Charter — Project #

Project Name

Author(s) of Charter

Date of Submision

4, Description

5. Key Project Personnel

6. Customers (Internal/External)
7. Scope

142

8. Estimated Project Budget

Item Description of ltems Fiscal Base Funding
Funding (recurring
(one-time costs)
costs)

TOTALS:

9. Assumptions

10. Constraints

11. Milestones

12. Resources / Person Days Needed

TOTAL PDs:

143

13. Risks

14. Success Criteria

15. Project Control

16. Consequences of failure

17. Alternatives

18. Contingency Plan

144

8.

9.

Business Case
Project name
Origin / Background
Current state
Business objectives
Opportunities
Business strategic alignment
Value Proposition
Desired business outcomes

Outcomes roadmap

10. Business benefits (by outcome)

11. Quantified benefits value

12. Return on investment

13. Risks

14. Opportunity Cost

15. Solution scope

16. Assumptions

17. Constraints,

18. Options identified/ evaluated

145

146

19. Size, Scale and Complexity assessment

20. Deliverables

21. Organizational areas impacted (internally and extenally),
22.Key stakeholders,

23. Dependencies

24. Approach

25. Workload estimate

26. Required resources —FKroject leadership, Project governance, Resources)
27.Funding

28. Project controls

29. Reporting processes

30. Success Criteria

Business Requirements
Requirement #

Description -

Contact Information

Prepared by

Name, Title
Phone
Email address

Contributors

Name, Title, Company
Name, Title, Company

Primary Customer Contacts

Name Name
Phone Number Phone Number
Email address Email Address

Distribution and Sign-Off

147

Area Signature and Date Area Signature and Date

Overview

Give a brief outline explaining the current systemd the system in use by the customer.

Summary of Impact

Explain what the impact will be on current processesystems.

Proposed System

An overview of the customer requirements, includiplzases of development.

Dependencies on Other Products

Describe any potential dependencies on other ptedugroduct lines.

Prerequisites or Stipulations for Receiving the Prduct

List any systems or products that will be requiteatdware and software as well as versions.

Issues/Concerns/Constraints

List any concerns related to internal/external'dparty systems.

Future Considerations

Describe any possible future considerations, ifeerént configurations or systems supported.

148

GAP ANALYSIS

149

Item No.

End State

Current State

Gaps

150

151

REQUIREMENT CHANGE REQUEST

Requirement Change Request Form

Change Request Requestor’s Requestor’s Requestor’s Requestor’s
Date: Name: Phone no: Fax no.: Email Address:
Priority: (H/M/L) Requirement Name: Attachments: (Y/N)

Change request location:

Document Title: Version #: Date:

1. CHANGE

(Describe the change requested below and attach additional pages if necessary. Please
describe what you were doing and what you want changed. Use a new form for each change
requested.)

2. Analysis

Change Control Change Title: Priority Assigned by Assigned To:
Board (CCB): CCB: (H, M, L)
Error Enhancement Not in Error — Insufficient Other
Explain and Information for
Return to Analysis
Originator

L]

L]

Explanation:

Approval for Proposed Change: (CCB USE ONLY)

external impact? (Yes/No)

Approve Disapprove Defer
[] [] []
Authorized By: Date:
Does this change have an Analysis Performed By: Date:

152

3. CORRECTION

Describe change here and provide information:

Work Performed By: Date:
(Provide documentation release information in this section)
Product: Release Date: Version #:
Work Performed By: Date:

153

154

155

Impact Analysis Checklist for Requirements Changes

Implications of the Proposed Change

Identify any existing requirements in the basetime conflict with the proposed change.
Identify any other pending requirement changescabaflict with the proposed change.
What are the consequences of not making the change?

What are possible adverse side effects or othies aémaking the proposed change?

Will the proposed change adversely affect perforreaequirements or other quality
attributes?

Will the change affect any system component thatces critical properties such as safety
and security, or involve a product change thagarg recertification of any kind?

Is the proposed change feasible within known tezdironstraints and current staff skills?

00 Will the proposed change place unacceptable den@méday computer resources required
for the development, test, or operating environisfent

[0 Must any tools be acquired to implement and testtiange?

00 How will the proposed change affect the sequenegenidencies, effort, or duration of any
tasks currently in the project plan?

O Will prototyping or other user input be requiredvirify the proposed change?

[0 How much effort that has already been investetiénproject will be lost if this change is
accepted?

O Will the proposed change cause an increase in ptashit cost, such as by increasing third-
party product licensing fees?

0 Will the change affect any marketing, manufacturingining, or customer support plans?

OO0Oo0oogod

O

O

System Elements Affected by the Proposed Change

Identify any user interface changes, additiongledetions required.

Identify any changes, additions, or deletions rexfliin reports, databases, or data files.
Identify the design components that must be createdified, or deleted.

Identify hardware components that must be addéeheal, or deleted.

Identify the source code files that must be createatlified, or deleted.

Identify any changes required in build files.

ljdei‘ntifyé existing unit, integration, system, andegtance test cases that must be modified or
eleted.

OOoo0OooQgoQgoo

156

Estir_nahe the number of new unit, integration, systend acceptance test cases that will be
required.

Identify any help screens, user manuals, trainiagenmals, or other documentation that must
be created or modified.

Icllqentify any other systems, applications, librarmshardware components affected by the
change.

Identify any third party software that must be pased.

Identify any impact the proposed change will hamél® project’s software project
management plan, software quality assurance pidinvare configuration management plan,
or other plans.

Quantify any effects the proposed change will havédudgets of scarce resources, such as
memory, processing power, network bandwidth, reaétschedule.

Identify any impact the proposed change will hamdielded systems if the affected
component is not perfectly backward compatible.

Effort Estimation for a Requirements Change

Effort
(Labor Hours)

Task

Update the SRS or requirements database with tve ne
requirement

Develop and evaluate prototype

Create new design components

Modify existing design components

Develop new user interface components

Modify existing user interface components
Develop new user publications and help screens
Modify existing user publications and help screens
Develop new source code

Modify existing source code

Purchase and integrate third party software

Identify, purchase, and integrate hardware compsnenalify
vendor

Modify build files

Develop new unit and integration tests

Modify existing unit and integration tests

Perform unit and integration testing after implenag¢ion
Write new system and acceptance test cases
Modify existing system and acceptance test cases
Modify automated test drivers

Perform regression testing at unit, integratiord system levels

157

158

Develop new reports

Modify existing reports

Develop new database elements
Modify existing database elements
Develop new data files

Modify existing data files

Modify various project plans

Update other documentation

Update requirements traceability matrix
Review modified work products

Perform rework following reviews and testing

Recertify product as being safe, secure, and camiphvith
standards.

Other additional tasks

TOTAL ESTIMATED EFFORT

Procedure:

Identify the subset of the above tasks that willdhto be done.

Allocate resources to tasks.

Estimate effort required for pertinent tasks listdve, based on assigned resources.
Total the effort estimates.

Sequence tasks and identify predecessors.

Determine whether change is on the project’s alifpath.

Estimate schedule and cost impact.

NogkwnhE

Impact Analysis Report Template

Change Request ID:

Title:

Description:

Analyst:

Date Prepared:

Prioritization Estimates:

Relative Benefit: _ (1-9)
Relative Penalty: ~ (1-9)
Relative Cost: (19
Relative Risk: (19

Calculated Priority:

Estimated total effort:

Estimated lost effort:

Estimated schedule impact:

(relative to other pending requirements)

labor hours
labor hoursn(fidiscarded work)

days

Additional cost impact:

Quiality impact:

dollars

159

Other requirements affected:

160

Other tasks affected:

Integration issues:

Life cycle cost issues:

Other components to examine for possible changes:

161

